Nanowires and nanotubes from π-conjugated organic materials fabricated by template wetting

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Resumé

1D nanostructures (nanowires and/or nanotubes) from poly(9,9-dioctylfluorene-2,7-diyl) (PF8), poly(3-hexylthiophene-2,5-diyl) (P3HT), and N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) were successfully fabricated by a simple and facile template-based technique. The technique involved wetting of porous anodic alumina membranes by solutions and/or melts of the respective materials. Arrays of 1D nanostructures from the polymers PF8 and P3HT can be obtained by both solution- and melt-assisted template wetting. In the case of PF8, the morphology of the obtained nanostructures depends on the wetting conditions: for diluted PF8 solutions mostly nanotubes are obtained; while for concentrated PF8 solutions and PF8 melts, the formation of nanowires is dominating. Wetting of the template pores by P3HT solutions and melts leads to the formation of nanotubes. For the small-molecule material PTCDI-C8, arrays of nanowires can only be obtained by melt-assisted wetting. Wetting of the template pores with PTCDI-C8 solutions does not allow the formation of pronounced 1D nanostructures. For all three materials, the diameters of the formed nanowires and nanotubes correspond to those of the template pores (around 250 nm), while their lengths range from hundreds of nanometers to tens of micrometers. The photoluminescence spectra of the as-prepared nanostructures show peak shifts and redistribution of the peak intensities, if compared to unstructured thin films from the respective materials.
OriginalsprogEngelsk
TidsskriftApplied Physics A: Materials Science & Processing
Vol/bind114
Udgave nummer4
Sider (fra-til)1067-1074
Antal sider8
ISSN0947-8396
DOI
StatusUdgivet - 2014

Citer dette

@article{ebfee4fa71c54f9ea896ecfd43663f74,
title = "Nanowires and nanotubes from π-conjugated organic materials fabricated by template wetting",
abstract = "1D nanostructures (nanowires and/or nanotubes) from poly(9,9-dioctylfluorene-2,7-diyl) (PF8), poly(3-hexylthiophene-2,5-diyl) (P3HT), and N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) were successfully fabricated by a simple and facile template-based technique. The technique involved wetting of porous anodic alumina membranes by solutions and/or melts of the respective materials. Arrays of 1D nanostructures from the polymers PF8 and P3HT can be obtained by both solution- and melt-assisted template wetting. In the case of PF8, the morphology of the obtained nanostructures depends on the wetting conditions: for diluted PF8 solutions mostly nanotubes are obtained; while for concentrated PF8 solutions and PF8 melts, the formation of nanowires is dominating. Wetting of the template pores by P3HT solutions and melts leads to the formation of nanotubes. For the small-molecule material PTCDI-C8, arrays of nanowires can only be obtained by melt-assisted wetting. Wetting of the template pores with PTCDI-C8 solutions does not allow the formation of pronounced 1D nanostructures. For all three materials, the diameters of the formed nanowires and nanotubes correspond to those of the template pores (around 250 nm), while their lengths range from hundreds of nanometers to tens of micrometers. The photoluminescence spectra of the as-prepared nanostructures show peak shifts and redistribution of the peak intensities, if compared to unstructured thin films from the respective materials.",
author = "Kirill Bordo and Manuela Schiek and Horst-G{\"u}nter Rubahn",
year = "2014",
doi = "10.1007/s00339-014-8226-5",
language = "English",
volume = "114",
pages = "1067--1074",
journal = "Applied Physics A: Materials Science & Processing",
issn = "0947-8396",
publisher = "Heinemann",
number = "4",

}

Nanowires and nanotubes from π-conjugated organic materials fabricated by template wetting. / Bordo, Kirill; Schiek, Manuela; Rubahn, Horst-Günter.

I: Applied Physics A: Materials Science & Processing, Bind 114, Nr. 4, 2014, s. 1067-1074.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

TY - JOUR

T1 - Nanowires and nanotubes from π-conjugated organic materials fabricated by template wetting

AU - Bordo, Kirill

AU - Schiek, Manuela

AU - Rubahn, Horst-Günter

PY - 2014

Y1 - 2014

N2 - 1D nanostructures (nanowires and/or nanotubes) from poly(9,9-dioctylfluorene-2,7-diyl) (PF8), poly(3-hexylthiophene-2,5-diyl) (P3HT), and N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) were successfully fabricated by a simple and facile template-based technique. The technique involved wetting of porous anodic alumina membranes by solutions and/or melts of the respective materials. Arrays of 1D nanostructures from the polymers PF8 and P3HT can be obtained by both solution- and melt-assisted template wetting. In the case of PF8, the morphology of the obtained nanostructures depends on the wetting conditions: for diluted PF8 solutions mostly nanotubes are obtained; while for concentrated PF8 solutions and PF8 melts, the formation of nanowires is dominating. Wetting of the template pores by P3HT solutions and melts leads to the formation of nanotubes. For the small-molecule material PTCDI-C8, arrays of nanowires can only be obtained by melt-assisted wetting. Wetting of the template pores with PTCDI-C8 solutions does not allow the formation of pronounced 1D nanostructures. For all three materials, the diameters of the formed nanowires and nanotubes correspond to those of the template pores (around 250 nm), while their lengths range from hundreds of nanometers to tens of micrometers. The photoluminescence spectra of the as-prepared nanostructures show peak shifts and redistribution of the peak intensities, if compared to unstructured thin films from the respective materials.

AB - 1D nanostructures (nanowires and/or nanotubes) from poly(9,9-dioctylfluorene-2,7-diyl) (PF8), poly(3-hexylthiophene-2,5-diyl) (P3HT), and N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) were successfully fabricated by a simple and facile template-based technique. The technique involved wetting of porous anodic alumina membranes by solutions and/or melts of the respective materials. Arrays of 1D nanostructures from the polymers PF8 and P3HT can be obtained by both solution- and melt-assisted template wetting. In the case of PF8, the morphology of the obtained nanostructures depends on the wetting conditions: for diluted PF8 solutions mostly nanotubes are obtained; while for concentrated PF8 solutions and PF8 melts, the formation of nanowires is dominating. Wetting of the template pores by P3HT solutions and melts leads to the formation of nanotubes. For the small-molecule material PTCDI-C8, arrays of nanowires can only be obtained by melt-assisted wetting. Wetting of the template pores with PTCDI-C8 solutions does not allow the formation of pronounced 1D nanostructures. For all three materials, the diameters of the formed nanowires and nanotubes correspond to those of the template pores (around 250 nm), while their lengths range from hundreds of nanometers to tens of micrometers. The photoluminescence spectra of the as-prepared nanostructures show peak shifts and redistribution of the peak intensities, if compared to unstructured thin films from the respective materials.

U2 - 10.1007/s00339-014-8226-5

DO - 10.1007/s00339-014-8226-5

M3 - Journal article

VL - 114

SP - 1067

EP - 1074

JO - Applied Physics A: Materials Science & Processing

JF - Applied Physics A: Materials Science & Processing

SN - 0947-8396

IS - 4

ER -