Nanophotonics platform for cavity QED with diamond nanocrystals

Hamidreza Siampour*

*Kontaktforfatter for dette arbejde

Publikation: Konferencebidrag uden forlag/tidsskriftPaperForskningpeer review

Resumé

We present a hybrid plasmon-dielectric photonic crystal nanocavity to integrate with atom-like impurities embedded in nanodiamonds and enhance the strength of photon-emitter interactions. Deterministic interfacing at plasmonic hot spots enables strong Purcell enhancement of spontaneous emission rate coupled to the high Q/V cavity mode. This approach paves the way for spectral selection of zero-phonon optical lines in split-vacancy color centers, leading to the experiment of entanglement between an optical photon and a spin qubit.
OriginalsprogEngelsk
Publikationsdato18. mar. 2019
StatusUdgivet - 18. mar. 2019
BegivenhedBENASQUE Quantum Nanophotonics - Benasque, Spanien
Varighed: 17. mar. 201923. mar. 2019
http://benasque.org/2019quantumnanophotonics/cgi-bin/talks/allprint.pl

Konference

KonferenceBENASQUE Quantum Nanophotonics
LandSpanien
ByBenasque
Periode17/03/201923/03/2019
Internetadresse

Fingeraftryk

nanocrystals
platforms
diamonds
cavities
photons
color centers
spontaneous emission
Q factors
emitters
photonics
impurities
augmentation
crystals
atoms
interactions

Citer dette

Siampour, H. (2019). Nanophotonics platform for cavity QED with diamond nanocrystals. Afhandling præsenteret på BENASQUE Quantum Nanophotonics, Benasque, Spanien.
Siampour, Hamidreza. / Nanophotonics platform for cavity QED with diamond nanocrystals. Afhandling præsenteret på BENASQUE Quantum Nanophotonics, Benasque, Spanien.
@conference{f78252f2d58a4229bb131754321d38b2,
title = "Nanophotonics platform for cavity QED with diamond nanocrystals",
abstract = "We present a hybrid plasmon-dielectric photonic crystal nanocavity to integrate with atom-like impurities embedded in nanodiamonds and enhance the strength of photon-emitter interactions. Deterministic interfacing at plasmonic hot spots enables strong Purcell enhancement of spontaneous emission rate coupled to the high Q/V cavity mode. This approach paves the way for spectral selection of zero-phonon optical lines in split-vacancy color centers, leading to the experiment of entanglement between an optical photon and a spin qubit.",
keywords = "Cavity quantum electrodynamics, Spin-photon entanglement",
author = "Hamidreza Siampour",
year = "2019",
month = "3",
day = "18",
language = "English",
note = "BENASQUE Quantum Nanophotonics ; Conference date: 17-03-2019 Through 23-03-2019",
url = "http://benasque.org/2019quantumnanophotonics/cgi-bin/talks/allprint.pl",

}

Siampour, H 2019, 'Nanophotonics platform for cavity QED with diamond nanocrystals' Paper fremlagt ved BENASQUE Quantum Nanophotonics, Benasque, Spanien, 17/03/2019 - 23/03/2019, .

Nanophotonics platform for cavity QED with diamond nanocrystals. / Siampour, Hamidreza.

2019. Afhandling præsenteret på BENASQUE Quantum Nanophotonics, Benasque, Spanien.

Publikation: Konferencebidrag uden forlag/tidsskriftPaperForskningpeer review

TY - CONF

T1 - Nanophotonics platform for cavity QED with diamond nanocrystals

AU - Siampour, Hamidreza

PY - 2019/3/18

Y1 - 2019/3/18

N2 - We present a hybrid plasmon-dielectric photonic crystal nanocavity to integrate with atom-like impurities embedded in nanodiamonds and enhance the strength of photon-emitter interactions. Deterministic interfacing at plasmonic hot spots enables strong Purcell enhancement of spontaneous emission rate coupled to the high Q/V cavity mode. This approach paves the way for spectral selection of zero-phonon optical lines in split-vacancy color centers, leading to the experiment of entanglement between an optical photon and a spin qubit.

AB - We present a hybrid plasmon-dielectric photonic crystal nanocavity to integrate with atom-like impurities embedded in nanodiamonds and enhance the strength of photon-emitter interactions. Deterministic interfacing at plasmonic hot spots enables strong Purcell enhancement of spontaneous emission rate coupled to the high Q/V cavity mode. This approach paves the way for spectral selection of zero-phonon optical lines in split-vacancy color centers, leading to the experiment of entanglement between an optical photon and a spin qubit.

KW - Cavity quantum electrodynamics

KW - Spin-photon entanglement

M3 - Paper

ER -

Siampour H. Nanophotonics platform for cavity QED with diamond nanocrystals. 2019. Afhandling præsenteret på BENASQUE Quantum Nanophotonics, Benasque, Spanien.