Multicritical behavior in models with two competing order parameters

A. Eichhorn, D. Mesterházy, Michael Scherer

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


We employ the nonperturbative functional renormalization group to study models with an O(N 1) O(N 2) symmetry. Here different fixed points exist in three dimensions, corresponding to bicritical and tetracritical behavior induced by the competition of two order parameters. We discuss the critical behavior of the symmetry-enhanced isotropic, the decoupled and the biconical fixed point, and analyze their stability in the N 1,N 2 plane. We study the fate of nontrivial fixed points during the transition from three to four dimensions, finding evidence for a triviality problem for coupled two-scalar models in high-energy physics. We also point out the possibility of noncanonical critical exponents at semi-Gaussian fixed points and show the emergence of Goldstone modes from discrete symmetries.

TidsskriftPhysical Review E
Udgave nummer4
StatusUdgivet - 2013
Udgivet eksterntJa


Dyk ned i forskningsemnerne om 'Multicritical behavior in models with two competing order parameters'. Sammen danner de et unikt fingeraftryk.