### Resumé

This paper presents actuator fault diagnosis for multirotor UAVs based on a cascade of a nonlinear Thau observer and a linearized Kalman filter. An example of actuator fault is when one or more rotors fail to deliver the required thrust to stabilize the UAVs. To simplify the presentation, we present a standard model for a quadcopter derived from Newton-Euler equation. The nonlinear model is locally Lips-chitz due to the cross and dot products between the angular and linear velocity vectors. The adaptive observer is designed assuming the angular velocity measurement is available, such that the model becomes linear time-varying (LTV). We show if the fault is constant then the observer goes to the actual value asymptotically, while if the fault is time-varying then the difference between the observer and the actual value will only be uniformly ultimately bounded. The proposed algorithm enables the system to detect, isolate, and estimate the magnitude of the faults. Numerical simulations show the proposed method able to estimate the state and the fault accurately.

Originalsprog | Engelsk |
---|---|

Titel | 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018 |

Forlag | IEEE |

Publikationsdato | sep. 2018 |

Sider | 1017-1024 |

Artikelnummer | 8453420 |

ISBN (Trykt) | 978-1-5386-1353-5 |

ISBN (Elektronisk) | 978-1-5386-1354-2 |

DOI | |

Status | Udgivet - sep. 2018 |

Begivenhed | 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018 - Dallas, USA Varighed: 12. jun. 2018 → 15. jun. 2018 |

### Konference

Konference | 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018 |
---|---|

Land | USA |

By | Dallas |

Periode | 12/06/2018 → 15/06/2018 |

### Fingeraftryk

### Citer dette

*2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018*(s. 1017-1024). [8453420] IEEE. https://doi.org/10.1109/ICUAS.2018.8453420

}

*2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018.*, 8453420, IEEE, s. 1017-1024, 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018, Dallas, USA, 12/06/2018. https://doi.org/10.1109/ICUAS.2018.8453420

**Model-Based Actuator Fault Diagnosis in Multirotor UAVs.** / Hasan, Agus; Johansen, Tor Arne.

Publikation: Bidrag til bog/antologi/rapport/konference-proceeding › Konferencebidrag i proceedings › Forskning › peer review

TY - GEN

T1 - Model-Based Actuator Fault Diagnosis in Multirotor UAVs

AU - Hasan, Agus

AU - Johansen, Tor Arne

PY - 2018/9

Y1 - 2018/9

N2 - This paper presents actuator fault diagnosis for multirotor UAVs based on a cascade of a nonlinear Thau observer and a linearized Kalman filter. An example of actuator fault is when one or more rotors fail to deliver the required thrust to stabilize the UAVs. To simplify the presentation, we present a standard model for a quadcopter derived from Newton-Euler equation. The nonlinear model is locally Lips-chitz due to the cross and dot products between the angular and linear velocity vectors. The adaptive observer is designed assuming the angular velocity measurement is available, such that the model becomes linear time-varying (LTV). We show if the fault is constant then the observer goes to the actual value asymptotically, while if the fault is time-varying then the difference between the observer and the actual value will only be uniformly ultimately bounded. The proposed algorithm enables the system to detect, isolate, and estimate the magnitude of the faults. Numerical simulations show the proposed method able to estimate the state and the fault accurately.

AB - This paper presents actuator fault diagnosis for multirotor UAVs based on a cascade of a nonlinear Thau observer and a linearized Kalman filter. An example of actuator fault is when one or more rotors fail to deliver the required thrust to stabilize the UAVs. To simplify the presentation, we present a standard model for a quadcopter derived from Newton-Euler equation. The nonlinear model is locally Lips-chitz due to the cross and dot products between the angular and linear velocity vectors. The adaptive observer is designed assuming the angular velocity measurement is available, such that the model becomes linear time-varying (LTV). We show if the fault is constant then the observer goes to the actual value asymptotically, while if the fault is time-varying then the difference between the observer and the actual value will only be uniformly ultimately bounded. The proposed algorithm enables the system to detect, isolate, and estimate the magnitude of the faults. Numerical simulations show the proposed method able to estimate the state and the fault accurately.

U2 - 10.1109/ICUAS.2018.8453420

DO - 10.1109/ICUAS.2018.8453420

M3 - Article in proceedings

SN - 978-1-5386-1353-5

SP - 1017

EP - 1024

BT - 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018

PB - IEEE

ER -