ML Based Control in Precision Agriculture: LED Intensity and CO2 Emission Case Study

Pither Gabriel Tene Bermeo*, Benaoumeur Senouci, Jacob Copeland

*Kontaktforfatter

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

This paper presents a new approach in controlling fundamental parameters (Light Intensity, Temperature, humidity ... etc.) related to precision agriculture using Machine Learning. We propose and design a new autonomous control system that applies data-driven approach. Several AI prediction models are developed using local data sets. Leveraging the power of Long Short-Term Memory (LSTM) models, the system aims to dynamically adjust light output in response to varying levels of carbon dioxide emissions. The model is deployed in a local server using a hardware architecture based on Raspberry Pi and a ESP32 microcontroller. Pi Server facilitates model deployment and data storage, while ESP32 provides wireless communication and peripherals interface to ensure efficient real-time data sensing and light control. Our results show that our multivariate model, which uses temperature, humidity, and CO2 emissions, provides better accuracy in terms of RMSE. Also, the embedded developed architecture facilitates the real time data sensing, collection and control.

OriginalsprogEngelsk
TitelSmart Applications and Data Analysis : 5th International Conference, SADASC 2024, Proceedings, Pt.2
RedaktørerMohamed Hamlich, Hicham Moutachaouik, Fadi Dornaika, Carlos Ordonez, Ladjel Bellatreche
ForlagSpringer Science+Business Media
Publikationsdato2024
Sider3-15
ISBN (Trykt)9783031770425
DOI
StatusUdgivet - 2024
Begivenhed5th International Conference on Smart Applications and Data Analysis for Smart Cyber Physical Systems, SADASC 2024 - Tangier, Marokko
Varighed: 18. apr. 202420. apr. 2024

Konference

Konference5th International Conference on Smart Applications and Data Analysis for Smart Cyber Physical Systems, SADASC 2024
Land/OmrådeMarokko
ByTangier
Periode18/04/202420/04/2024
NavnCommunications in Computer and Information Science
Vol/bind2168 CCIS
ISSN1865-0929

Bibliografisk note

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Fingeraftryk

Dyk ned i forskningsemnerne om 'ML Based Control in Precision Agriculture: LED Intensity and CO2 Emission Case Study'. Sammen danner de et unikt fingeraftryk.

Citationsformater