Abstract
This paper presents a new approach in controlling fundamental parameters (Light Intensity, Temperature, humidity ... etc.) related to precision agriculture using Machine Learning. We propose and design a new autonomous control system that applies data-driven approach. Several AI prediction models are developed using local data sets. Leveraging the power of Long Short-Term Memory (LSTM) models, the system aims to dynamically adjust light output in response to varying levels of carbon dioxide emissions. The model is deployed in a local server using a hardware architecture based on Raspberry Pi and a ESP32 microcontroller. Pi Server facilitates model deployment and data storage, while ESP32 provides wireless communication and peripherals interface to ensure efficient real-time data sensing and light control. Our results show that our multivariate model, which uses temperature, humidity, and CO2 emissions, provides better accuracy in terms of RMSE. Also, the embedded developed architecture facilitates the real time data sensing, collection and control.
Originalsprog | Engelsk |
---|---|
Titel | Smart Applications and Data Analysis : 5th International Conference, SADASC 2024, Proceedings, Pt.2 |
Redaktører | Mohamed Hamlich, Hicham Moutachaouik, Fadi Dornaika, Carlos Ordonez, Ladjel Bellatreche |
Forlag | Springer Science+Business Media |
Publikationsdato | 2024 |
Sider | 3-15 |
ISBN (Trykt) | 9783031770425 |
DOI | |
Status | Udgivet - 2024 |
Begivenhed | 5th International Conference on Smart Applications and Data Analysis for Smart Cyber Physical Systems, SADASC 2024 - Tangier, Marokko Varighed: 18. apr. 2024 → 20. apr. 2024 |
Konference
Konference | 5th International Conference on Smart Applications and Data Analysis for Smart Cyber Physical Systems, SADASC 2024 |
---|---|
Land/Område | Marokko |
By | Tangier |
Periode | 18/04/2024 → 20/04/2024 |
Navn | Communications in Computer and Information Science |
---|---|
Vol/bind | 2168 CCIS |
ISSN | 1865-0929 |
Bibliografisk note
Publisher Copyright:© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.