Metabolic fates and effects of nitrite in brown trout under normoxic and hypoxic conditions: blood and tissue nitrite metabolism and interactions with branchial NOS, Na+/K+-ATPase and hsp70 expression

Frank Bo Jensen, Lucie Gerber, Marie Niemann Hansen, Steffen Madsen

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

55 Downloads (Pure)

Resumé

Nitrite secures essential nitric oxide (NO) bioavailability in hypoxia at low endogenous concentrations, whereas it becomes toxic at high concentrations. We exposed brown trout to normoxic and hypoxic water in the absence and presence of added ambient nitrite to decipher the cellular metabolism and effects of nitrite at basal and elevated concentrations under different oxygen regimes. We also tested hypotheses concerning the influence of nitrite on branchial nitric oxide synthase (NOS), Na+/K+-ATPase (nka) and heat shock protein (hsp70) mRNA expression. Basal plasma and erythrocyte nitrite levels were higher in hypoxia than normoxia, suggesting increased NOS activity. Nitrite exposure strongly elevated nitrite concentrations in plasma, erythrocytes, heart tissue and white muscle, which was associated with an extensive metabolism of nitrite to nitrate and to iron-nitrosylated and S-nitrosated compounds. Nitrite uptake was slightly higher in hypoxia than normoxia, and high internal nitrite levels extensively converted blood hemoglobin to methemoglobin and nitrosylhemoglobin. Hypoxia increased inducible NOS (iNOS) mRNA levels in the gills, which was overruled by a strong inhibition of iNOS expression by nitrite in both normoxia and hypoxia, suggesting negative-feedback regulation of iNOS gene expression by nitrite. A similar inhibition was absent for neuronal NOS. Branchial NKA activity stayed unchanged, but mRNA levels of the nkaα1a subunit increased with hypoxia and nitrite, which may have countered an initial NKA inhibition. Nitrite also increased hsp70 gene expression, probably contributing to the cytoprotective effects of nitrite at low concentrations. Nitrite displays a concentration-dependent switch between positive and negative effects similar to other signaling molecules.
OriginalsprogEngelsk
TidsskriftJournal of Experimental Biology
Vol/bind218
Sider (fra-til)2015-2022
ISSN0022-0949
DOI
StatusUdgivet - 2015

Fingeraftryk

sodium-potassium-exchanging ATPase
normoxia
Trout
nitric oxide
Salmo trutta
nitric oxide synthase
Nitric Oxide Synthase
anaerobic conditions
nitrites
nitrite
metabolism
blood
hypoxia
tissues
effect
tissue
sodium-translocating ATPase
Messenger RNA
gene expression
erythrocytes

Emneord

  • Hypoxia, Na+/K+-ATPase, Nitric oxide, Nitrite, NOS, HSP70

Citer dette

@article{30d14b06678447578c018e89c32a8ba1,
title = "Metabolic fates and effects of nitrite in brown trout under normoxic and hypoxic conditions: blood and tissue nitrite metabolism and interactions with branchial NOS, Na+/K+-ATPase and hsp70 expression",
abstract = "Nitrite secures essential nitric oxide (NO) bioavailability in hypoxia at low endogenous concentrations, whereas it becomes toxic at high concentrations. We exposed brown trout to normoxic and hypoxic water in the absence and presence of added ambient nitrite to decipher the cellular metabolism and effects of nitrite at basal and elevated concentrations under different oxygen regimes. We also tested hypotheses concerning the influence of nitrite on branchial nitric oxide synthase (NOS), Na+/K+-ATPase (nka) and heat shock protein (hsp70) mRNA expression. Basal plasma and erythrocyte nitrite levels were higher in hypoxia than normoxia, suggesting increased NOS activity. Nitrite exposure strongly elevated nitrite concentrations in plasma, erythrocytes, heart tissue and white muscle, which was associated with an extensive metabolism of nitrite to nitrate and to iron-nitrosylated and S-nitrosated compounds. Nitrite uptake was slightly higher in hypoxia than normoxia, and high internal nitrite levels extensively converted blood hemoglobin to methemoglobin and nitrosylhemoglobin. Hypoxia increased inducible NOS (iNOS) mRNA levels in the gills, which was overruled by a strong inhibition of iNOS expression by nitrite in both normoxia and hypoxia, suggesting negative-feedback regulation of iNOS gene expression by nitrite. A similar inhibition was absent for neuronal NOS. Branchial NKA activity stayed unchanged, but mRNA levels of the nkaα1a subunit increased with hypoxia and nitrite, which may have countered an initial NKA inhibition. Nitrite also increased hsp70 gene expression, probably contributing to the cytoprotective effects of nitrite at low concentrations. Nitrite displays a concentration-dependent switch between positive and negative effects similar to other signaling molecules.",
keywords = "Hypoxia, Na+/K+-ATPase, Nitric oxide, Nitrite, NOS, HSP70, Hypoxia, Na+/K+-ATPase, Nitric oxide, Nitrite, NOS, HSP70",
author = "Jensen, {Frank Bo} and Lucie Gerber and Hansen, {Marie Niemann} and Steffen Madsen",
year = "2015",
doi = "10.1242/​jeb.120394",
language = "English",
volume = "218",
pages = "2015--2022",
journal = "BRITISH JOURNAL OF EXPERIMENTAL BIOLOGY",
issn = "0022-0949",
publisher = "The/Company of Biologists Ltd.",

}

TY - JOUR

T1 - Metabolic fates and effects of nitrite in brown trout under normoxic and hypoxic conditions: blood and tissue nitrite metabolism and interactions with branchial NOS, Na+/K+-ATPase and hsp70 expression

AU - Jensen, Frank Bo

AU - Gerber, Lucie

AU - Hansen, Marie Niemann

AU - Madsen, Steffen

PY - 2015

Y1 - 2015

N2 - Nitrite secures essential nitric oxide (NO) bioavailability in hypoxia at low endogenous concentrations, whereas it becomes toxic at high concentrations. We exposed brown trout to normoxic and hypoxic water in the absence and presence of added ambient nitrite to decipher the cellular metabolism and effects of nitrite at basal and elevated concentrations under different oxygen regimes. We also tested hypotheses concerning the influence of nitrite on branchial nitric oxide synthase (NOS), Na+/K+-ATPase (nka) and heat shock protein (hsp70) mRNA expression. Basal plasma and erythrocyte nitrite levels were higher in hypoxia than normoxia, suggesting increased NOS activity. Nitrite exposure strongly elevated nitrite concentrations in plasma, erythrocytes, heart tissue and white muscle, which was associated with an extensive metabolism of nitrite to nitrate and to iron-nitrosylated and S-nitrosated compounds. Nitrite uptake was slightly higher in hypoxia than normoxia, and high internal nitrite levels extensively converted blood hemoglobin to methemoglobin and nitrosylhemoglobin. Hypoxia increased inducible NOS (iNOS) mRNA levels in the gills, which was overruled by a strong inhibition of iNOS expression by nitrite in both normoxia and hypoxia, suggesting negative-feedback regulation of iNOS gene expression by nitrite. A similar inhibition was absent for neuronal NOS. Branchial NKA activity stayed unchanged, but mRNA levels of the nkaα1a subunit increased with hypoxia and nitrite, which may have countered an initial NKA inhibition. Nitrite also increased hsp70 gene expression, probably contributing to the cytoprotective effects of nitrite at low concentrations. Nitrite displays a concentration-dependent switch between positive and negative effects similar to other signaling molecules.

AB - Nitrite secures essential nitric oxide (NO) bioavailability in hypoxia at low endogenous concentrations, whereas it becomes toxic at high concentrations. We exposed brown trout to normoxic and hypoxic water in the absence and presence of added ambient nitrite to decipher the cellular metabolism and effects of nitrite at basal and elevated concentrations under different oxygen regimes. We also tested hypotheses concerning the influence of nitrite on branchial nitric oxide synthase (NOS), Na+/K+-ATPase (nka) and heat shock protein (hsp70) mRNA expression. Basal plasma and erythrocyte nitrite levels were higher in hypoxia than normoxia, suggesting increased NOS activity. Nitrite exposure strongly elevated nitrite concentrations in plasma, erythrocytes, heart tissue and white muscle, which was associated with an extensive metabolism of nitrite to nitrate and to iron-nitrosylated and S-nitrosated compounds. Nitrite uptake was slightly higher in hypoxia than normoxia, and high internal nitrite levels extensively converted blood hemoglobin to methemoglobin and nitrosylhemoglobin. Hypoxia increased inducible NOS (iNOS) mRNA levels in the gills, which was overruled by a strong inhibition of iNOS expression by nitrite in both normoxia and hypoxia, suggesting negative-feedback regulation of iNOS gene expression by nitrite. A similar inhibition was absent for neuronal NOS. Branchial NKA activity stayed unchanged, but mRNA levels of the nkaα1a subunit increased with hypoxia and nitrite, which may have countered an initial NKA inhibition. Nitrite also increased hsp70 gene expression, probably contributing to the cytoprotective effects of nitrite at low concentrations. Nitrite displays a concentration-dependent switch between positive and negative effects similar to other signaling molecules.

KW - Hypoxia, Na+/K+-ATPase, Nitric oxide, Nitrite, NOS, HSP70

KW - Hypoxia, Na+/K+-ATPase, Nitric oxide, Nitrite, NOS, HSP70

U2 - 10.1242/​jeb.120394

DO - 10.1242/​jeb.120394

M3 - Journal article

VL - 218

SP - 2015

EP - 2022

JO - BRITISH JOURNAL OF EXPERIMENTAL BIOLOGY

JF - BRITISH JOURNAL OF EXPERIMENTAL BIOLOGY

SN - 0022-0949

ER -