Membrane restructuring by phospholipase A 2 is regulated by the presence of lipid domains

Chad Leidy*, Jackson Ocampo, Lars Duelund, Ole G. Mouritsen, Kent Jørgensen, Günther H. Peters

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Resumé

Secretory phospholipase A 2 (sPL A2) catalyzes the hydrolysis of glycerophospholipids. This enzyme is sensitive to membrane structure, and its activity has been shown to increase in the presence of liquid-crystalline/gel (L α/L β) lipid domains. In this work, we explore whether lipid domains can also direct the activity of the enzyme by inducing hydrolysis of certain lipid components due to preferential activity of the enzyme toward lipid domains susceptible to sPLA 2. Specifically, we show that the presence of L α/L β and L α/P β′ phase coexistence in a 1,2-dimyristoyl-sn-glycero-3- phosphocholine (DMPC)/1,2 distearoyl-sn-glycero-3-phosphocholine (DSPC) system results in the preferential hydrolysis of the shorter-chained lipid component in the mixture, leading to an enrichment in the longer-chained component. The restructuring process is monitored by atomic force microscopy on supported single and double bilayers formed by vesicle fusion. We observe that during preferential hydrolysis of the DMPC-rich L α regions, the L β and P β′ regions grow and reseal, maintaining membrane integrity. This result indicates that a sharp reorganization of the membrane structure can occur during sPL A2 hydrolysis without necessarily destroying the membrane. We confirm by high-performance liquid chromatography the preferential hydrolysis of DMPC within the phase coexistence region of the DMPC/DSPC phase diagram, showing that this preferential hydrolysis is accentuated close to the solidus phase boundary. Differential scanning calorimetry results show that this preferential hydrolysis in the presence of lipid domains leads to a membrane system with a higher-temperature melting profile due to enrichment in DSPC. Together, these results show that the presence of lipid domains can induce specificity in the hydrolytic activity of the enzyme, resulting in marked differences in the physical properties of the membrane end-product.

OriginalsprogEngelsk
TidsskriftBiophysical Journal
Vol/bind101
Udgave nummer1
Sider (fra-til)90-99
Antal sider10
ISSN0006-3495
DOI
StatusUdgivet - 6. jul. 2011

Fingeraftryk

Phosphorylcholine
Hydrolysis
Lipids
Membranes
Enzymes
Atomic Force Microscopy
Freezing
High Pressure Liquid Chromatography

Citer dette

Leidy, Chad ; Ocampo, Jackson ; Duelund, Lars ; Mouritsen, Ole G. ; Jørgensen, Kent ; Peters, Günther H. / Membrane restructuring by phospholipase A 2 is regulated by the presence of lipid domains. I: Biophysical Journal. 2011 ; Bind 101, Nr. 1. s. 90-99.
@article{cc9f2a8e36e84bbc9929313f739d1ae4,
title = "Membrane restructuring by phospholipase A 2 is regulated by the presence of lipid domains",
abstract = "Secretory phospholipase A 2 (sPL A2) catalyzes the hydrolysis of glycerophospholipids. This enzyme is sensitive to membrane structure, and its activity has been shown to increase in the presence of liquid-crystalline/gel (L α/L β) lipid domains. In this work, we explore whether lipid domains can also direct the activity of the enzyme by inducing hydrolysis of certain lipid components due to preferential activity of the enzyme toward lipid domains susceptible to sPLA 2. Specifically, we show that the presence of L α/L β and L α/P β′ phase coexistence in a 1,2-dimyristoyl-sn-glycero-3- phosphocholine (DMPC)/1,2 distearoyl-sn-glycero-3-phosphocholine (DSPC) system results in the preferential hydrolysis of the shorter-chained lipid component in the mixture, leading to an enrichment in the longer-chained component. The restructuring process is monitored by atomic force microscopy on supported single and double bilayers formed by vesicle fusion. We observe that during preferential hydrolysis of the DMPC-rich L α regions, the L β and P β′ regions grow and reseal, maintaining membrane integrity. This result indicates that a sharp reorganization of the membrane structure can occur during sPL A2 hydrolysis without necessarily destroying the membrane. We confirm by high-performance liquid chromatography the preferential hydrolysis of DMPC within the phase coexistence region of the DMPC/DSPC phase diagram, showing that this preferential hydrolysis is accentuated close to the solidus phase boundary. Differential scanning calorimetry results show that this preferential hydrolysis in the presence of lipid domains leads to a membrane system with a higher-temperature melting profile due to enrichment in DSPC. Together, these results show that the presence of lipid domains can induce specificity in the hydrolytic activity of the enzyme, resulting in marked differences in the physical properties of the membrane end-product.",
author = "Chad Leidy and Jackson Ocampo and Lars Duelund and Mouritsen, {Ole G.} and Kent J{\o}rgensen and Peters, {G{\"u}nther H.}",
year = "2011",
month = "7",
day = "6",
doi = "10.1016/j.bpj.2011.02.062",
language = "English",
volume = "101",
pages = "90--99",
journal = "Biophysical Journal",
issn = "0006-3495",
publisher = "Cell Press",
number = "1",

}

Membrane restructuring by phospholipase A 2 is regulated by the presence of lipid domains. / Leidy, Chad; Ocampo, Jackson; Duelund, Lars; Mouritsen, Ole G.; Jørgensen, Kent; Peters, Günther H.

I: Biophysical Journal, Bind 101, Nr. 1, 06.07.2011, s. 90-99.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

TY - JOUR

T1 - Membrane restructuring by phospholipase A 2 is regulated by the presence of lipid domains

AU - Leidy, Chad

AU - Ocampo, Jackson

AU - Duelund, Lars

AU - Mouritsen, Ole G.

AU - Jørgensen, Kent

AU - Peters, Günther H.

PY - 2011/7/6

Y1 - 2011/7/6

N2 - Secretory phospholipase A 2 (sPL A2) catalyzes the hydrolysis of glycerophospholipids. This enzyme is sensitive to membrane structure, and its activity has been shown to increase in the presence of liquid-crystalline/gel (L α/L β) lipid domains. In this work, we explore whether lipid domains can also direct the activity of the enzyme by inducing hydrolysis of certain lipid components due to preferential activity of the enzyme toward lipid domains susceptible to sPLA 2. Specifically, we show that the presence of L α/L β and L α/P β′ phase coexistence in a 1,2-dimyristoyl-sn-glycero-3- phosphocholine (DMPC)/1,2 distearoyl-sn-glycero-3-phosphocholine (DSPC) system results in the preferential hydrolysis of the shorter-chained lipid component in the mixture, leading to an enrichment in the longer-chained component. The restructuring process is monitored by atomic force microscopy on supported single and double bilayers formed by vesicle fusion. We observe that during preferential hydrolysis of the DMPC-rich L α regions, the L β and P β′ regions grow and reseal, maintaining membrane integrity. This result indicates that a sharp reorganization of the membrane structure can occur during sPL A2 hydrolysis without necessarily destroying the membrane. We confirm by high-performance liquid chromatography the preferential hydrolysis of DMPC within the phase coexistence region of the DMPC/DSPC phase diagram, showing that this preferential hydrolysis is accentuated close to the solidus phase boundary. Differential scanning calorimetry results show that this preferential hydrolysis in the presence of lipid domains leads to a membrane system with a higher-temperature melting profile due to enrichment in DSPC. Together, these results show that the presence of lipid domains can induce specificity in the hydrolytic activity of the enzyme, resulting in marked differences in the physical properties of the membrane end-product.

AB - Secretory phospholipase A 2 (sPL A2) catalyzes the hydrolysis of glycerophospholipids. This enzyme is sensitive to membrane structure, and its activity has been shown to increase in the presence of liquid-crystalline/gel (L α/L β) lipid domains. In this work, we explore whether lipid domains can also direct the activity of the enzyme by inducing hydrolysis of certain lipid components due to preferential activity of the enzyme toward lipid domains susceptible to sPLA 2. Specifically, we show that the presence of L α/L β and L α/P β′ phase coexistence in a 1,2-dimyristoyl-sn-glycero-3- phosphocholine (DMPC)/1,2 distearoyl-sn-glycero-3-phosphocholine (DSPC) system results in the preferential hydrolysis of the shorter-chained lipid component in the mixture, leading to an enrichment in the longer-chained component. The restructuring process is monitored by atomic force microscopy on supported single and double bilayers formed by vesicle fusion. We observe that during preferential hydrolysis of the DMPC-rich L α regions, the L β and P β′ regions grow and reseal, maintaining membrane integrity. This result indicates that a sharp reorganization of the membrane structure can occur during sPL A2 hydrolysis without necessarily destroying the membrane. We confirm by high-performance liquid chromatography the preferential hydrolysis of DMPC within the phase coexistence region of the DMPC/DSPC phase diagram, showing that this preferential hydrolysis is accentuated close to the solidus phase boundary. Differential scanning calorimetry results show that this preferential hydrolysis in the presence of lipid domains leads to a membrane system with a higher-temperature melting profile due to enrichment in DSPC. Together, these results show that the presence of lipid domains can induce specificity in the hydrolytic activity of the enzyme, resulting in marked differences in the physical properties of the membrane end-product.

UR - http://www.scopus.com/inward/record.url?scp=80052462187&partnerID=8YFLogxK

U2 - 10.1016/j.bpj.2011.02.062

DO - 10.1016/j.bpj.2011.02.062

M3 - Journal article

C2 - 21723818

AN - SCOPUS:80052462187

VL - 101

SP - 90

EP - 99

JO - Biophysical Journal

JF - Biophysical Journal

SN - 0006-3495

IS - 1

ER -