Maritime industry processes in the Baltic Sea Region: Synthesis of eco-inefficiencies and the potential of digital technologies for solving them

Elisa Aro, Niels Gorm Maly Rytter, Teemu Itälinna

Publikation: Bog/rapportRapportFormidling

Abstrakt

ECOPRODIGI (2017-2020) is an Interreg Baltic Sea Region flagship project, which links research organisations, enterprises, associations and business support organisations. Altogether, 21 partners jointly investigate the most critical eco-inefficiencies in maritime processes in the Baltic Sea Region as well as develop and pilot digital solutions for improving the eco-efficiency by focusing on three specific cases: 1) digital performance monitoring of vessels, 2) cargo stowage optimisation at ports and 3) process optimisation at shipyards. Furthermore, looking towards the future, the project partners, on one hand, create a digitalisation roadmap and training modules for future decision makers in the maritime industry but also reach out to policymakers to engage them in discussion regarding how they can support the digital change. This report provides an overview of the project and main findings achieved to date, describes the main eco-inefficiencies identified and presents the potential of digital technologies and new concepts for improving them. Also, as the current digital transformation relates to the way how changes are managed in organisations, this report presents the main challenges and requirements identified in the process of moving towards more digitalised business operations. Finally, the last section looks at the maritime sector from a broader perspective and provides some ideas about the most likely future developments. The main findings of the project so far indicate that major improvements in eco-efficiency can be carried out in the maritime industry. They can be summarised as follows: 1) In the first case, ‘digital performance monitoring’, the project partners estimate, for instance, that fuel consumption and emissions can potentially be reduced by 2-20% based on data and analysis from distinct ship segments, routes and their baseline situations. The reductions are possible to achieve by taking such actions as capitalising on the latest digital technologies, utilising and analysing real-time operational data and vessel performance, anticipating operating conditions and maintenance of the ship and its components, changing working methods and improving practices as well as placing a focus on the training of personnel. 2) In the second case, ‘cargo stowage optimisation’ the project partners identified a set of eco-efficiency bottlenecks in the cargo stowage processes at ports that can be subject to improvement. The use of advanced digital technologies can contribute to more efficient utilisation of vessels and terminal operations. The port stays can be reduced, and, thereby, vessels can sail more slowly and reduce fuel consumption and emissions. Moreover, when stability calculations improve due to further digitalisation of cargo unit data, the ship can be loaded more optimally and the amount of ballast water can potentially be decreased without compromising safety, which again reduces fuel consumption on the sea leg. It is estimated that fuel consumption and emissions can potentially be reduced by 2-10% per route and ship and that additional benefits can be gained on the landside due to future digital decision support tools applied for the end-to-end stowage process. In addition, improved cargo unit pick up time estimates can be provided to customers waiting for the cargo to be handled at port, whereby the service improves. 3) In the third case, ‘process optimisation at shipyards’, improved situational awareness and process management, including the use of new technologies, such as 3D and solutions for managing the complex supply chain, have potential for improving the shipyard processes aimed at increased eco-efficiency. For example, in block building phase 3D technology reduces lead-time and potentially saves hundreds of man-hours in rework due to the fact that more efficient processes and proactive actions are enabled.
OriginalsprogEngelsk
ForlagECOPRODIGI Project
Antal sider50
StatusUdgivet - 21. feb. 2020

Fingeraftryk

Dyk ned i forskningsemnerne om 'Maritime industry processes in the Baltic Sea Region: Synthesis of eco-inefficiencies and the potential of digital technologies for solving them'. Sammen danner de et unikt fingeraftryk.

Citationsformater