TY - JOUR
T1 - Mapping whole brain effects of infrared neural stimulation with positron emission tomography
AU - Meneghetti, Marcello
AU - Gudmundsen, Frederik
AU - Jessen, Naja S.
AU - Sui, Kunyang
AU - Baun, Christina
AU - Palner, Mikael
AU - Markos, Christos
PY - 2023
Y1 - 2023
N2 - Abstract The combination of neuroimaging and targeted neuromodulation is a crucial tool to gain a deeper understanding of neural networks at a circuit level. Infrared neurostimulation (INS) is a promising optical modality that allows to evoke neuronal activity with high spatial resolution without need for the introduction of exogenous substances in the brain. Here, we report the use of whole-brain functional [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) imaging during INS in the dorsal striatum, performed using a multifunctional soft neural probe. We demonstrate the possibility to identify multi-circuit connection patterns in both cortical and subcortical brain regions within a single scan. By using a bolus plus infusion FDG-PET scanning protocol, we were able to observe the metabolic rate evolution in these regions during the experiments and correlate its variation with the onset of the INS stimulus. Due to the focality of INS and the large amount of viable molecular targets for positron emission tomography (PET), this novel approach to simultaneous imaging and stimulation is highly versatile. This pilot study can pave the way to further understand the brain connectivity on a global scale.
AB - Abstract The combination of neuroimaging and targeted neuromodulation is a crucial tool to gain a deeper understanding of neural networks at a circuit level. Infrared neurostimulation (INS) is a promising optical modality that allows to evoke neuronal activity with high spatial resolution without need for the introduction of exogenous substances in the brain. Here, we report the use of whole-brain functional [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) imaging during INS in the dorsal striatum, performed using a multifunctional soft neural probe. We demonstrate the possibility to identify multi-circuit connection patterns in both cortical and subcortical brain regions within a single scan. By using a bolus plus infusion FDG-PET scanning protocol, we were able to observe the metabolic rate evolution in these regions during the experiments and correlate its variation with the onset of the INS stimulus. Due to the focality of INS and the large amount of viable molecular targets for positron emission tomography (PET), this novel approach to simultaneous imaging and stimulation is highly versatile. This pilot study can pave the way to further understand the brain connectivity on a global scale.
U2 - 10.1162/imag_a_00052
DO - 10.1162/imag_a_00052
M3 - Journal article
SN - 2837-6056
VL - 1
SP - 1
EP - 17
JO - Imaging Neuroscience
JF - Imaging Neuroscience
ER -