Local robust and asymptotically unbiased estimation of conditional Pareto-type tails

Yuri Goegebeur, Armelle Guillou, Goedele Dierckx

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

We introduce a non-parametric robust and asymptotically unbiased estimator for the tail index of a conditional Pareto-type response distribution in presence of random covariates. The estimator is obtained from local fits of the extended Pareto distribution to the relative excesses over a high threshold using an adjusted minimum density power divergence estimation technique. We derive the asymptotic properties of the proposed estimator under some mild regularity conditions, and also investigate its finite sample performance with a small simulation experiment. The practical applicability of the methodology is illustrated on a dataset of calcium content measurements of soil samples.

OriginalsprogEngelsk
TidsskriftTEST
Vol/bind23
Udgave nummer2
Sider (fra-til)330-355
ISSN1133-0686
DOI
StatusUdgivet - maj 2014

Fingeraftryk

Dyk ned i forskningsemnerne om 'Local robust and asymptotically unbiased estimation of conditional Pareto-type tails'. Sammen danner de et unikt fingeraftryk.

Citationsformater