Lazy product discovery in huge configuration spaces

Michael Lienhardt, Ferruccio Damiani, Einar Broch Johnsen, Jacopo Mauro

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

Highly-configurable software systems can have thousands of interdependent configuration options across different subsystems. In the resulting configuration space, discovering a valid product configuration for some selected options can be complex and error prone. The configuration space can be organized using a feature model, fragmented into smaller interdependent feature models reflecting the configuration options of each subsystem. We propose a method for lazy product discovery in large fragmented feature models with interdependent features. We formalize the method and prove its soundness and completeness. The evaluation explores an industrial-size configuration space. The results show that lazy product discovery has significant performance benefits compared to standard product discovery, which in contrast to our method requires all fragments to be composed to analyze the feature model. Furthermore, the method succeeds when more efficient, heuristics-based engines fail to find a valid configuration.

OriginalsprogEngelsk
TitelProceedings - 2020 ACM/IEEE 42nd International Conference on Software Engineering, ICSE 2020
ForlagAssociation for Computing Machinery
Publikationsdato27. jun. 2020
Sider1509-1521
Artikelnummer3380372
ISBN (Elektronisk)9781450371216
DOI
StatusUdgivet - 27. jun. 2020
Begivenhed42nd ACM/IEEE International Conference on Software Engineering, ICSE 2020 - Virtual, Online, Sydkorea
Varighed: 27. jun. 202019. jul. 2020

Konference

Konference42nd ACM/IEEE International Conference on Software Engineering, ICSE 2020
Land/OmrådeSydkorea
ByVirtual, Online
Periode27/06/202019/07/2020
SponsorACM Special Interest Group on Software Engineering (SIGSOFT), IEEE Computer Society Technical Council on Software Engineering (TCSE), Korean Institute of Information Scientists and Engineers (KIISE)

Fingeraftryk

Dyk ned i forskningsemnerne om 'Lazy product discovery in huge configuration spaces'. Sammen danner de et unikt fingeraftryk.

Citationsformater