Abstract
Addressing the complexity of accurately classifying International Classification of Diseases (ICD) codes from medical discharge summaries is challenging due to the intricate nature of medical documentation. This paper explores the use of Large Language Models (LLM), specifically the LLAMA architecture, to enhance ICD code classification through two methodologies: direct application as a classifier and as a generator of enriched text representations within a Multi-Filter Residual Convolutional Neural Network (MultiResCNN) framework. We evaluate these methods by comparing them against state-of-the-art approaches, revealing LLAMA's potential to significantly improve classification outcomes by providing deep contextual insights into medical texts.
Originalsprog | Engelsk |
---|---|
Titel | 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) |
Redaktører | Mario Cannataro, Huiru Zheng, Lin Gao, Jianlin Cheng, Joao Luis de Miranda, Ester Zumpano, Xiaohua Hu, Young-Rae Cho, Taesung Park |
Forlag | IEEE |
Publikationsdato | dec. 2024 |
Sider | 3066-3069 |
ISBN (Elektronisk) | 9798350386226 |
DOI | |
Status | Udgivet - dec. 2024 |
Begivenhed | 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024 - Lisbon, Portugal Varighed: 3. dec. 2024 → 6. dec. 2024 |
Konference
Konference | 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024 |
---|---|
Land/Område | Portugal |
By | Lisbon |
Periode | 03/12/2024 → 06/12/2024 |
Sponsor | Air Portugal, Centro de Recursos Naturais e Ambiente (CERENA), IEEE, IST Tecnico Lisboa, NSF, Politecnico de Portalegre |
Navn | Proceedings - IEEE International Conference on Bioinformatics and Biomedicine |
---|---|
ISSN | 2156-1125 |
Bibliografisk note
Publisher Copyright:© 2024 IEEE.