Resumé
Originalsprog | Engelsk |
---|---|
Tidsskrift | Analysis & PDE |
Vol/bind | 10 |
Udgave nummer | 7 |
Sider (fra-til) | 1757-1791 |
ISSN | 2157-5045 |
DOI | |
Status | Udgivet - 2017 |
Emneord
- math.OA
- math.GR
- math.QA
Citer dette
}
L^2-Betti numbers of rigid C*-tensor categories and discrete quantum groups. / Kyed, David; Raum, Sven ; Vaes, Stefaan; Valvekens, Matthias.
I: Analysis & PDE, Bind 10, Nr. 7, 2017, s. 1757-1791.Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
TY - JOUR
T1 - L^2-Betti numbers of rigid C*-tensor categories and discrete quantum groups
AU - Kyed, David
AU - Raum, Sven
AU - Vaes, Stefaan
AU - Valvekens, Matthias
N1 - Preprint, submitted to "Analysis and PDE"
PY - 2017
Y1 - 2017
N2 - We compute the $L^2$-Betti numbers of the free $C^*$-tensor categories, which are the representation categories of the universal unitary quantum groups $A_u(F)$. We show that the $L^2$-Betti numbers of the dual of a compact quantum group $G$ are equal to the $L^2$-Betti numbers of the representation category $Rep(G)$ and thus, in particular, invariant under monoidal equivalence. As an application, we obtain several new computations of $L^2$-Betti numbers for discrete quantum groups, including the quantum permutation groups and the free wreath product groups. Finally, we obtain upper bounds for the first $L^2$-Betti number in terms of a generating set of a $C^*$-tensor category.
AB - We compute the $L^2$-Betti numbers of the free $C^*$-tensor categories, which are the representation categories of the universal unitary quantum groups $A_u(F)$. We show that the $L^2$-Betti numbers of the dual of a compact quantum group $G$ are equal to the $L^2$-Betti numbers of the representation category $Rep(G)$ and thus, in particular, invariant under monoidal equivalence. As an application, we obtain several new computations of $L^2$-Betti numbers for discrete quantum groups, including the quantum permutation groups and the free wreath product groups. Finally, we obtain upper bounds for the first $L^2$-Betti number in terms of a generating set of a $C^*$-tensor category.
KW - math.OA
KW - math.GR
KW - math.QA
U2 - 10.2140/apde.2017.10.1757
DO - 10.2140/apde.2017.10.1757
M3 - Journal article
VL - 10
SP - 1757
EP - 1791
JO - Analysis & PDE
JF - Analysis & PDE
SN - 2157-5045
IS - 7
ER -