TY - JOUR
T1 - Inhibition of glycogenolysis prolongs action potential repriming period and impairs muscle function in rat skeletal muscle
AU - Jensen, Rasmus
AU - Nielsen, Joachim
AU - Ørtenblad, Niels
N1 - This article is protected by copyright. All rights reserved.
PY - 2020/2
Y1 - 2020/2
N2 - Key points: Muscle glycogen content is associated with muscle function, but the physiological link between the two is poorly understood. This study investigated the effects of inhibiting glycogenolysis, while maintaining high overall energy status, on different aspects of muscle function. We demonstrate here that Na
+,K
+-ATPase activity depends on glycogenolytically derived ATP regardless of high global ATP, with a decrease in activity leading to reduced force production and accelerated fatigue development. The results support the concept of compartmentalized energy transfer with glycogen metabolism playing a crucial role in intramuscular ATP resynthesis and ion regulation. This study gives specific insights into muscular function and may help towards a better understanding of glycogen storage diseases and muscle fatigue. Abstract: Skeletal muscle glycogen content is associated with muscle function and fatigability. However, little is known about the physiological link between glycogen content and muscle function. Here we aimed to investigate the importance of glycogenolytically derived ATP per se on muscle force and action potential (AP) repriming period, i.e. the time before a second AP can be produced (indicative of Na
+,K
+-ATPase activity). Single fibres from rat extensor digitorum longus muscles were isolated and mechanically skinned in order to investigate force production and the AP repriming period while global ATP and PCr concentrations were kept high. The importance of glycogenolytically derived ATP was studied by inhibition of glycogen phosphorylase (1,4-dideoxy-1,4-imino-d-arabinitol (DAB; 2 mm) or CP-316,819 (CP; 10 µm)) or glycogen removal (amyloglucosidase, 20 U ml
−1). Tetanic force decreased by (mean (SD)) 21 (15)% (P < 0.001) and 76 (28)% (DAB) or 94 (6)% (CP, P < 0.001) in well-polarized and partially depolarized fibres, respectively. In depolarized fibres, twitch force decreased by 16 (10)% and 55 (26)% with DAB and CP, respectively, with no effect in well-polarized fibres (84 (10)%, P = 0.14). There was no effect of glycogen phosphorylase inhibition on repriming period in well-polarized fibres (median (25th, 75th percentile): 5 (4, 5) vs. 4 (4, 5) ms, P = 0.26), while the repriming period was prolonged from 6 (5, 7) to 8 (7, 10) ms (P = 0.01) in partially depolarized fibres. In line with this, glycogen removal increased repriming period from 5 (5, 6) to 6 (5, 7) ms (P = 0.003) in depolarized fibres. Together, these data strongly indicate that blocking glycogenolysis attenuates Na
+,K
+-ATPase activity, which in turn increases the repriming period and reduces force, demonstrating a functional link between glycogenolytically derived ATP and force production.
AB - Key points: Muscle glycogen content is associated with muscle function, but the physiological link between the two is poorly understood. This study investigated the effects of inhibiting glycogenolysis, while maintaining high overall energy status, on different aspects of muscle function. We demonstrate here that Na
+,K
+-ATPase activity depends on glycogenolytically derived ATP regardless of high global ATP, with a decrease in activity leading to reduced force production and accelerated fatigue development. The results support the concept of compartmentalized energy transfer with glycogen metabolism playing a crucial role in intramuscular ATP resynthesis and ion regulation. This study gives specific insights into muscular function and may help towards a better understanding of glycogen storage diseases and muscle fatigue. Abstract: Skeletal muscle glycogen content is associated with muscle function and fatigability. However, little is known about the physiological link between glycogen content and muscle function. Here we aimed to investigate the importance of glycogenolytically derived ATP per se on muscle force and action potential (AP) repriming period, i.e. the time before a second AP can be produced (indicative of Na
+,K
+-ATPase activity). Single fibres from rat extensor digitorum longus muscles were isolated and mechanically skinned in order to investigate force production and the AP repriming period while global ATP and PCr concentrations were kept high. The importance of glycogenolytically derived ATP was studied by inhibition of glycogen phosphorylase (1,4-dideoxy-1,4-imino-d-arabinitol (DAB; 2 mm) or CP-316,819 (CP; 10 µm)) or glycogen removal (amyloglucosidase, 20 U ml
−1). Tetanic force decreased by (mean (SD)) 21 (15)% (P < 0.001) and 76 (28)% (DAB) or 94 (6)% (CP, P < 0.001) in well-polarized and partially depolarized fibres, respectively. In depolarized fibres, twitch force decreased by 16 (10)% and 55 (26)% with DAB and CP, respectively, with no effect in well-polarized fibres (84 (10)%, P = 0.14). There was no effect of glycogen phosphorylase inhibition on repriming period in well-polarized fibres (median (25th, 75th percentile): 5 (4, 5) vs. 4 (4, 5) ms, P = 0.26), while the repriming period was prolonged from 6 (5, 7) to 8 (7, 10) ms (P = 0.01) in partially depolarized fibres. In line with this, glycogen removal increased repriming period from 5 (5, 6) to 6 (5, 7) ms (P = 0.003) in depolarized fibres. Together, these data strongly indicate that blocking glycogenolysis attenuates Na
+,K
+-ATPase activity, which in turn increases the repriming period and reduces force, demonstrating a functional link between glycogenolytically derived ATP and force production.
KW - force
KW - glycogen
KW - muscle fatigue
KW - sodium–potassium pump
U2 - 10.1113/JP278543
DO - 10.1113/JP278543
M3 - Journal article
C2 - 31823376
SN - 0022-3751
VL - 598
SP - 789
EP - 803
JO - The Journal of Physiology
JF - The Journal of Physiology
IS - 4
ER -