Inductive limits of c*-algebras and compact quantum metric spaces

Konrad Aguilar*

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstrakt

Given a unital inductive limit of C∗-algebras for which each C∗-algebra of the inductive sequence comes equipped with a Rieffel compact quantum metric, we produce sufficient conditions to build a compact quantum metric on the inductive limit from the quantum metrics on the inductive sequence by utilizing the completeness of the dual Gromov-Hausdorff propinquity of Latrémolière on compact quantum metric spaces. This allows us to place new quantum metrics on all unital approximately finite-dimensional (AF) algebras that extend our previous work with Latrémolière on unital AF algebras with faithful tracial state. As a consequence, we produce a continuous image of the entire Fell topology on the ideal space of any unital AF algebra in the dual Gromov-Hausdorff propinquity topology.

OriginalsprogEngelsk
TidsskriftJournal of the Australian Mathematical Society
ISSN1446-7887
DOI
StatusE-pub ahead of print - 27. mar. 2020

Fingeraftryk Dyk ned i forskningsemnerne om 'Inductive limits of c*-algebras and compact quantum metric spaces'. Sammen danner de et unikt fingeraftryk.

Citationsformater