TY - JOUR
T1 - ICrawl
T2 - An Inchworm-Inspired Crawling Robot
AU - Khan, Muhammad Bilal
AU - Chuthong, Thirawat
AU - Danh Do, Cao
AU - Thor, Mathias
AU - Billeschou, Peter
AU - Larsen, Jorgen Christian
AU - Manoonpong, Poramate
PY - 2020
Y1 - 2020
N2 - Inchworms use their morphology and evolved behaviors to crawl and climb various complex surfaces. This has inspired the development of different robots that can demonstrate similar capabilities for various applications such as the inspection of a complex environment. One of the key challenges in designing these robots is to enable them to be practically deployable with a compact design for providing continuous adaptability to a complex terrain such as an outer-pipe surface. Taking this into consideration, we present a new design for an inchworm-inspired crawling robot (iCrawl). The 5 DOF robot relies on two legs; each with an electromagnetic foot, in order to crawl on the metal pipe surfaces. The robot uses a passive foot-cap underneath an electromagnetic foot, enabling it to be a versatile pipe-crawler. The foot-cap design is an abstraction of the leg posture in an inchworm adapting to a round surface. The proposed foot-caps give the robot adaptability and stability for crawling on metal pipes of various curvatures. A state-machine based controller was developed to produce the required motor signals for the two inchworm-inspired crawling gaits: i) the step gait, and ii) the sliding gait. Both gaits were tested on the robot, eventually leading to it effectively crawling on the pipes and flat surfaces, climbing a metal wall and a pipe, and succeeding in obstacle avoidance during crawling. Experimental results also show that the robot has the ability to crawl on the metal pipes of various curvatures using the foot-caps and an appropriate gait. The robot can be used as a new robotic solution to assist close inspection outside the pipelines, thus minimizing downtime in the oil and gas industry.
AB - Inchworms use their morphology and evolved behaviors to crawl and climb various complex surfaces. This has inspired the development of different robots that can demonstrate similar capabilities for various applications such as the inspection of a complex environment. One of the key challenges in designing these robots is to enable them to be practically deployable with a compact design for providing continuous adaptability to a complex terrain such as an outer-pipe surface. Taking this into consideration, we present a new design for an inchworm-inspired crawling robot (iCrawl). The 5 DOF robot relies on two legs; each with an electromagnetic foot, in order to crawl on the metal pipe surfaces. The robot uses a passive foot-cap underneath an electromagnetic foot, enabling it to be a versatile pipe-crawler. The foot-cap design is an abstraction of the leg posture in an inchworm adapting to a round surface. The proposed foot-caps give the robot adaptability and stability for crawling on metal pipes of various curvatures. A state-machine based controller was developed to produce the required motor signals for the two inchworm-inspired crawling gaits: i) the step gait, and ii) the sliding gait. Both gaits were tested on the robot, eventually leading to it effectively crawling on the pipes and flat surfaces, climbing a metal wall and a pipe, and succeeding in obstacle avoidance during crawling. Experimental results also show that the robot has the ability to crawl on the metal pipes of various curvatures using the foot-caps and an appropriate gait. The robot can be used as a new robotic solution to assist close inspection outside the pipelines, thus minimizing downtime in the oil and gas industry.
KW - bio-inspired legged robot
KW - inspection robot
KW - locomotion control
KW - magnetic adhesion
KW - Pipe-crawling robot
KW - robot gait design
KW - tele-Autonomous system
U2 - 10.1109/ACCESS.2020.3035871
DO - 10.1109/ACCESS.2020.3035871
M3 - Journal article
AN - SCOPUS:85096310763
SN - 2169-3536
VL - 8
SP - 200655
EP - 200668
JO - IEEE Access
JF - IEEE Access
ER -