Projekter pr. år
Abstract
Most of people’s communication happens through body language and gestures. Gesture recognition in human-robot interaction is an unsolved problem which limits the possible communication between humans and robots in today’s applications. Gesture recognition can be considered as the same problem as action recognition which is largely solved by deep learning, however, current publicly available datasets do not contain many classes relevant to human-robot interaction. In order to address the problem, a human-robot interaction gesture dataset is therefore required. In this paper, we introduce HRI-Gestures, which includes 13600 instances of RGB and depth image sequences, and joint position files. A state of the art action recognition network is trained on relevant subsets of the dataset and achieve upwards of 96.9% accuracy. However, as the network is designed for the large-scale NTU RGB+D dataset, subpar performance is achieved on the full HRI-Gestures dataset. Further enhancement of gesture recognition is possible by tailored algorithms or extension of the dataset.
Originalsprog | Engelsk |
---|---|
Titel | Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications |
Redaktører | Giovanni Maria Farinella, Petia Radeva, Kadi Bouatouch |
Vol/bind | 5 |
Forlag | SCITEPRESS Digital Library |
Publikationsdato | 2022 |
Sider | 559-566 |
ISBN (Elektronisk) | 978-989-758-555-5 |
DOI | |
Status | Udgivet - 2022 |
Begivenhed | 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Online - Varighed: 6. feb. 2022 → 8. feb. 2022 |
Konference
Konference | 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Online |
---|---|
Periode | 06/02/2022 → 08/02/2022 |
Navn | IVAPP |
---|---|
Vol/bind | 5 |
ISSN | 2184-4321 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'HRI-Gestures: Gesture Recognition for Human-Robot Interaction'. Sammen danner de et unikt fingeraftryk.-
Mobility Analytics using Sparse Mobility Data and Open Spatial Data
Bodenhagen, L., Krüger, N., Kjærgaard, M. B. & Kollakidou, A.
01/05/2021 → 30/04/2024
Projekter: Projekt › Forskning
-