Hochschild polytopes

Vincent Pilaud*, Daria Poliakova

*Kontaktforfatter

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

The (m, n)-multiplihedron is a polytope whose faces correspond to m-painted n-trees. Deleting certain inequalities from its facet description, we obtain the (m, n)Hochschild polytope whose faces correspond to m-lighted n-shades. Moreover, there is a natural shadow map from m-painted n-trees to m-lighted n-shades, which defines a meet semilattice morphism of rotation lattices. In particular, when m = 1, our Hochschild polytope is a deformed permutahedron realizing the Hochschild lattice.

OriginalsprogEngelsk
TitelProceedings of the 36th Conference on Formal Power and Series and Algebraic Combinatorics
Antal sider12
Publikationsdato1. apr. 2024
Artikelnummer1
StatusUdgivet - 1. apr. 2024
Begivenhed36th International Conference on Formal Power Series and Algebraic Combinatorics: FPSAC 2024 - Bochum, Tyskland
Varighed: 22. jul. 202426. jul. 2024

Konference

Konference36th International Conference on Formal Power Series and Algebraic Combinatorics
Land/OmrådeTyskland
ByBochum
Periode22/07/202426/07/2024
NavnSéminaire Lotharingien de Combinatoire
Vol/bind91B
ISSN1286-4889

Bibliografisk note

Publisher Copyright:
© (2024), (Seminaire Lotharingien de Combinatoire). All rights reserved.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Hochschild polytopes'. Sammen danner de et unikt fingeraftryk.

Citationsformater