Abstract
The (m, n)-multiplihedron is a polytope whose faces correspond to m-painted n-trees. Deleting certain inequalities from its facet description, we obtain the (m, n)Hochschild polytope whose faces correspond to m-lighted n-shades. Moreover, there is a natural shadow map from m-painted n-trees to m-lighted n-shades, which defines a meet semilattice morphism of rotation lattices. In particular, when m = 1, our Hochschild polytope is a deformed permutahedron realizing the Hochschild lattice.
Originalsprog | Engelsk |
---|---|
Titel | Proceedings of the 36th Conference on Formal Power and Series and Algebraic Combinatorics |
Antal sider | 12 |
Publikationsdato | 1. apr. 2024 |
Artikelnummer | 1 |
Status | Udgivet - 1. apr. 2024 |
Begivenhed | 36th International Conference on Formal Power Series and Algebraic Combinatorics: FPSAC 2024 - Bochum, Tyskland Varighed: 22. jul. 2024 → 26. jul. 2024 |
Konference
Konference | 36th International Conference on Formal Power Series and Algebraic Combinatorics |
---|---|
Land/Område | Tyskland |
By | Bochum |
Periode | 22/07/2024 → 26/07/2024 |
Navn | Séminaire Lotharingien de Combinatoire |
---|---|
Vol/bind | 91B |
ISSN | 1286-4889 |
Bibliografisk note
Publisher Copyright:© (2024), (Seminaire Lotharingien de Combinatoire). All rights reserved.