TY - JOUR
T1 - High-intensity sprint training inhibits mitochondrial respiration through aconitase inactivation
AU - Larsen, Filip J
AU - Schiffer, Tomas A
AU - Ørtenblad, Niels
AU - Zinner, Christoph
AU - Morales-Alamo, David
AU - Willis, Sarah J
AU - Calbet, Jose A
AU - Holmberg, Hans-Christer
AU - Boushel, Robert
N1 - © FASEB.
PY - 2016/1
Y1 - 2016/1
N2 - Intense exercise training is a powerful stimulus that activates mitochondrial biogenesis pathways and thus increases mitochondrial density and oxidative capacity. Moderate levels of reactive oxygen species (ROS) during exercise are considered vital in the adaptive response, but high ROS production is a serious threat to cellular homeostasis. Although biochemical markers of the transition from adaptive to maladaptive ROS stress are lacking, it is likely mediated by redox sensitive enzymes involved in oxidative metabolism. One potential enzyme mediating such redox sensitivity is the citric acid cycle enzyme aconitase. In this study, we examined biopsy specimens of vastus lateralis and triceps brachii in healthy volunteers, together with primary human myotubes. An intense exercise regimen inactivated aconitase by 55-72%, resulting in inhibition of mitochondrial respiration by 50-65%. In the vastus, the mitochondrial dysfunction was compensated for by a 15-72% increase in mitochondrial proteins, whereas H2O2 emission was unchanged. In parallel with the inactivation of aconitase, the intermediary metabolite citrate accumulated and played an integral part in cellular protection against oxidative stress. In contrast, the triceps failed to increase mitochondrial density, and citrate did not accumulate. Instead, mitochondrial H2O2 emission was decreased to 40% of the pretraining levels, together with a 6-fold increase in protein abundance of catalase. In this study, a novel mitochondrial stress response was highlighted where accumulation of citrate acted to preserve the redox status of the cell during periods of intense exercise.-Larsen, F. J., Schiffer, T. A., Ørtenblad, N., Zinner, C., Morales-Alamo, D., Willis, S. J., Calbet, J. A., Holmberg, H.-C., Boushel, R. High-intensity sprint training inhibits mitochondrial respiration through aconitase inactivation.
AB - Intense exercise training is a powerful stimulus that activates mitochondrial biogenesis pathways and thus increases mitochondrial density and oxidative capacity. Moderate levels of reactive oxygen species (ROS) during exercise are considered vital in the adaptive response, but high ROS production is a serious threat to cellular homeostasis. Although biochemical markers of the transition from adaptive to maladaptive ROS stress are lacking, it is likely mediated by redox sensitive enzymes involved in oxidative metabolism. One potential enzyme mediating such redox sensitivity is the citric acid cycle enzyme aconitase. In this study, we examined biopsy specimens of vastus lateralis and triceps brachii in healthy volunteers, together with primary human myotubes. An intense exercise regimen inactivated aconitase by 55-72%, resulting in inhibition of mitochondrial respiration by 50-65%. In the vastus, the mitochondrial dysfunction was compensated for by a 15-72% increase in mitochondrial proteins, whereas H2O2 emission was unchanged. In parallel with the inactivation of aconitase, the intermediary metabolite citrate accumulated and played an integral part in cellular protection against oxidative stress. In contrast, the triceps failed to increase mitochondrial density, and citrate did not accumulate. Instead, mitochondrial H2O2 emission was decreased to 40% of the pretraining levels, together with a 6-fold increase in protein abundance of catalase. In this study, a novel mitochondrial stress response was highlighted where accumulation of citrate acted to preserve the redox status of the cell during periods of intense exercise.-Larsen, F. J., Schiffer, T. A., Ørtenblad, N., Zinner, C., Morales-Alamo, D., Willis, S. J., Calbet, J. A., Holmberg, H.-C., Boushel, R. High-intensity sprint training inhibits mitochondrial respiration through aconitase inactivation.
KW - Citrate
KW - Exercise
KW - Mitochondrial dysfunction
KW - Reactive oxygen species
KW - Mitochondria, Muscle/metabolism
KW - Muscle, Skeletal/enzymology
KW - Oxidative Stress
KW - Hydrogen Peroxide/metabolism
KW - Aconitate Hydratase/metabolism
KW - Humans
KW - Cells, Cultured
KW - Male
KW - Cell Respiration
KW - Citric Acid/metabolism
KW - Adult
KW - Physical Exertion
U2 - 10.1096/fj.15-276857
DO - 10.1096/fj.15-276857
M3 - Journal article
C2 - 26452378
SN - 0892-6638
VL - 30
SP - 417
EP - 427
JO - The FASEB Journal
JF - The FASEB Journal
IS - 1
ER -