Gromov-Hausdorff convergence of quantised intervals

Bidragets oversatte titel: Gromov-Hausdorff convergence of quantised intervals

David Kyed*, Jens Kaad, Thomas Gotfredsen

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


The Podles quantum sphere S^2_q admits a natural commutative C*-subalgebra I_q with spectrum {0} \cup {q^{2k}: k = 0,1,2,...}, which may therefore be considered as a quantised version of a classical interval. We study here the compact quantum metric space structure on I_q inherited from the corresponding structure on S^2_q, and provide an explicit formula for the metric induced on the spectrum. Moreover, we show that the resulting metric spaces vary continuously in the deformation parameter q with respect to the Gromov-Hausdorff distance, and that they converge to a classical interval of length pi as q tends to 1.
Bidragets oversatte titelGromov-Hausdorff convergence of quantised intervals
TidsskriftJournal of Mathematical Analysis and Applications
Udgave nummer2
Antal sider13
StatusUdgivet - 15. aug. 2021


Dyk ned i forskningsemnerne om 'Gromov-Hausdorff convergence of quantised intervals'. Sammen danner de et unikt fingeraftryk.