Gravitational waves from composite dark sectors

Roman Pasechnik, Manuel Reichert, Francesco Sannino, Zhi Wei Wang*


Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

3 Downloads (Pure)


We study under which conditions a first-order phase transition in a composite dark sector can yield an observable stochastic gravitational-wave signal. To this end, we employ the Linear-Sigma model featuring Nf = 3, 4, 5 flavours and perform a Cornwall-Jackiw-Tomboulis computation also accounting for the effects of the Polyakov loop. The model allows us to investigate the chiral phase transition in regimes that can mimic QCD-like theories incorporating in addition composite dynamics associated with the effects of confinement-deconfinement phase transition. A further benefit of this approach is that it allows to study the limit in which the effective interactions are weak. We show that strong first-order phase transitions occur for weak effective couplings of the composite sector leading to gravitational-wave signals potentially detectable at future experimental facilities.

TidsskriftJournal of High Energy Physics
Udgave nummer2
Antal sider33
StatusUdgivet - feb. 2024


Dyk ned i forskningsemnerne om 'Gravitational waves from composite dark sectors'. Sammen danner de et unikt fingeraftryk.