TY - JOUR
T1 - Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c
AU - NCD Risk Factor Collaboration (NCD-RisC)
A2 - Bjerregaard, Peter
A2 - Eriksen, Louise
A2 - Ottendahl, Charlotte Brandstrup
A2 - Tolstrup, Janne
A2 - Grøntved, Anders
A2 - Kristensen, Peter Lund
A2 - Møller, Niels Christian
A2 - Wedderkopp, Niels
PY - 2023/11
Y1 - 2023/11
N2 - Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance.
AB - Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance.
KW - Humans
KW - Glycated Hemoglobin
KW - Glucose
KW - Blood Glucose
KW - Prevalence
KW - Diabetes Mellitus/diagnosis
KW - Fasting
U2 - 10.1038/s41591-023-02610-2
DO - 10.1038/s41591-023-02610-2
M3 - Journal article
C2 - 37946056
SN - 1078-8956
VL - 29
SP - 2885
EP - 2901
JO - Nature Medicine
JF - Nature Medicine
IS - 11
ER -