Abstract
We consider the geometric quantisation of Chern–Simons theory for closed genus-one surfaces and semisimple complex algebraic groups. First we introduce the natural complexified analogue of the Hitchin connection in Kähler quantisation, with polarisations coming from the nonabelian Hodge hyper-Kähler geometry of the moduli spaces of flat connections, thereby complementing the real-polarised approach of Witten. Then we consider the connection of Witten, and we identify it with the complexified Hitchin connection using a version of the Bargmann transform on polarised sections over the moduli spaces.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Symplectic Geometry |
Vol/bind | 20 |
Udgave nummer | 6 |
Sider (fra-til) | 1215-1253 |
ISSN | 1527-5256 |
DOI | |
Status | Udgivet - 2022 |