GENERATION: An Efficient Denoising Autoencoders-Based Approach foAmputated Image Reconstruction

Leila Ben Othman*, Parisa Niloofar, Sadok Ben Yahia

*Kontaktforfatter

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

26 Downloads (Pure)

Abstract

Missing values in datasets pose a significant challenge, often leading to biased analyses and suboptimal model performance. This study shows a way to fill in missing values using Denoising AutoEncoders (DAE), a type of artificial neural network that is known for being able to learn stable ways to represent data. The observed data are used to train the DAE, and then they are used to fill in missing values. Extensive tests on different image datasets, taking into account different mechanisms of missing data and percentages of missingness, are used to see how well this method works. The results of the experiments show that the DAE-based imputation works better than other imputation methods, especially when it comes to handling informative missingness mechanisms.

OriginalsprogEngelsk
TitelProceedings of the 16th International Conference on Agents and Artificial Intelligence
Vol/bind3
ForlagSCITEPRESS Digital Library
Publikationsdato2024
Sider1237-1244
ISBN (Elektronisk)978-989-758-680-4
DOI
StatusUdgivet - 2024
Begivenhed16th International Conference on Agents and Artificial Intelligence, ICAART 2024 - Rome, Italien
Varighed: 24. feb. 202426. feb. 2024

Konference

Konference16th International Conference on Agents and Artificial Intelligence, ICAART 2024
Land/OmrådeItalien
ByRome
Periode24/02/202426/02/2024
NavnInternational Conference on Agents and Artificial Intelligence
ISSN2184-433X

Bibliografisk note

Publisher Copyright:
© 2024 by SCITEPRESS - Science and Technology Publications, Lda.

Fingeraftryk

Dyk ned i forskningsemnerne om 'GENERATION: An Efficient Denoising Autoencoders-Based Approach foAmputated Image Reconstruction'. Sammen danner de et unikt fingeraftryk.

Citationsformater