Abstract
Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 20170011 |
Tidsskrift | Journal of Integrative Bioinformatics |
Vol/bind | 14 |
Udgave nummer | 2 |
ISSN | 1613-4516 |
DOI | |
Status | Udgivet - 6. jun. 2017 |
Begivenhed | 13th Annual Meeting of the International Symposium on Integrative Bioinformatics - University of Southern Denmark, Campusvej 55 5230 Odense, Odense, Danmark Varighed: 22. jun. 2017 → 24. jun. 2017 Konferencens nummer: 13 http://www.imbio.de/ib2017/program.php |
Konference
Konference | 13th Annual Meeting of the International Symposium on Integrative Bioinformatics |
---|---|
Nummer | 13 |
Lokation | University of Southern Denmark, Campusvej 55 5230 Odense |
Land/Område | Danmark |
By | Odense |
Periode | 22/06/2017 → 24/06/2017 |
Internetadresse |