Feature selection for SUNNY: A study on the algorithm selection library

Roberto Amadini, Fabio Biselli, Maurizio Gabbrielli, Tong Liu, Jacopo Mauro

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

Given a collection of algorithms, the Algorithm Selection (AS) problem consists in identifying which of them is the best one for solving a given problem. The selection depends on a set of numerical features that characterize the problem to solve. In this paper we show the impact of feature selection techniques on the performance of the SUNNY algorithm selector, taking as reference the benchmarks of the AS library (ASlib). Results indicate that a handful of features is enough to reach similar, if not better, performance of the original SUNNY approach that uses all the available features. We also present sunny-as: a tool for using SUNNY on a generic ASlib scenario.

OriginalsprogEngelsk
TitelProceedings - 2015 IEEE 27th International Conference on Tools with Artificial Intelligence, ICTAI 2015
Antal sider8
ForlagIEEE Computer Society
Publikationsdato1. dec. 2015
Sider25-32
Artikelnummer7372114
ISBN (Elektronisk)9781509001637
DOI
StatusUdgivet - 1. dec. 2015
Udgivet eksterntJa
Begivenhed27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015 - Vietri sul Mare, Salerno, Italien
Varighed: 9. nov. 201511. nov. 2015

Konference

Konference27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015
Land/OmrådeItalien
ByVietri sul Mare, Salerno
Periode09/11/201511/11/2015
SponsorBiological and Artificial Intelligence Foundation (BAIF), IEEE Computer Society
NavnProceedings of the International Conference on Tools with Artificial Intelligence, ICTAI
Vol/bind2016-January
ISSN1082-3409

Fingeraftryk

Dyk ned i forskningsemnerne om 'Feature selection for SUNNY: A study on the algorithm selection library'. Sammen danner de et unikt fingeraftryk.

Citationsformater