Fault-Tolerant Model Predictive Control for Multirotor UAVs

Emil Lykke Diget, Agus Hasan*, Poramate Manoonpong

*Kontaktforfatter

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

28 Downloads (Pure)

Abstrakt

This paper presents a method for advanced fault tolerant control (FTC) of multirotor unmanned aerial vehicles (UAVs), which includes anomaly detection on sensor measurements, fault estimation on actuators, and a robust model predictive control (MPC). To detect anomalies on the sensor measurements, an Echo State Network is used. System states and faults are estimated using an adaptive extended Kalman filter. The system is further controlled using MPC. The method is tested in numerical simulations with a hexacopter dynamic model. Simulation results show the ability of the FTC to handle failure with different even and uneven actuator faults.
OriginalsprogEngelsk
Titel2022 American Control Conference, ACC 2022
ForlagIEEE
Publikationsdato2022
Sider4305-4310
ISBN (Elektronisk)9781665451963
DOI
StatusUdgivet - 2022
Begivenhed2022 American Control Conference, ACC 2022 - Atlanta, USA
Varighed: 8. jun. 202210. jun. 2022

Konference

Konference2022 American Control Conference, ACC 2022
Land/OmrådeUSA
ByAtlanta
Periode08/06/202210/06/2022
SponsorBoeing, et al., General Motors Co., MathWorks, Mitsubishi Electric Research Laboratory ((MERL), Quanser
NavnProceedings of the American Control Conference
Vol/bind2022-June
ISSN0743-1619

Bibliografisk note

Funding Information:
ACKNOWLEDGMENT This paper is partially funded by Equinor’s gift professorship in system dynamics for development of digital twin at NTNU.

Publisher Copyright:
© 2022 American Automatic Control Council.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Fault-Tolerant Model Predictive Control for Multirotor UAVs'. Sammen danner de et unikt fingeraftryk.

Citationsformater