Fault Identification Algorithm for Grid Connected Photovoltaic Systems using Machine Learning Techniques

K. Dadhich, V.S.B. Kurukuru, M.A. Khan, A. Haque

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

The motivation and background behind the fault detection for grid connected solar power plant is presented in this paper. The major issues encountered when integrating a PV system to the grid include multi-peak phenomenon due to partial shading, regulation of circulating currents, the impact of grid impedances on PV system stability, Fault Ride-Through (FRT) Capability, and anti-islanding detection. Hence, fault detection and condition monitoring system are necessary for smooth operation. In this paper, a fault classification technique for single-phase grid connected PV systems is developed. Wavelet Transform and Neural network approaches are used for developing the fault classification algorithm. The results depicted that the developed fault detection algorithm shows a significant improvement in the classification accuracy with 98.4%.
OriginalsprogEngelsk
Titel2019 International Conference on Power Electronics, Control and Automation, ICPECA 2019 - Proceedings
Publikationsdatonov. 2019
Artikelnummer8975397
ISBN (Elektronisk)9781728139586
DOI
StatusUdgivet - nov. 2019
Begivenhed2019 International Conference on Power Electronics, Control and Automation, ICPECA 2019 - Proceedings - New Delhi, Indien
Varighed: 16. nov. 201917. nov. 2019

Konference

Konference2019 International Conference on Power Electronics, Control and Automation, ICPECA 2019 - Proceedings
Land/OmrådeIndien
ByNew Delhi
Periode16/11/201917/11/2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'Fault Identification Algorithm for Grid Connected Photovoltaic Systems using Machine Learning Techniques'. Sammen danner de et unikt fingeraftryk.

Citationsformater