Facile transmetallation of [SbIII(DOTA)]- renders it unsuitable for medical applications

Catherine Chen, Charlotte Sommer, Helge Thisgaard, Vickie McKee, Christine J. McKenzie*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

34 Downloads (Pure)

Abstract

The antimony(III) complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) has been prepared and its exceptionally low stability observed. The Sb(III) ion in Na[Sb(DOTA)] 4H2O shows an approximately square antiprismatic coordination geometry that is close to superimposable to the Bi(III) geometry in [Bi(DOTA)]- in two phases containing this anion, Na[Bi(DOTA)] 4H2O, [H3O][Bi(DOTA)] H2O for which structures are also described. Interestingly, DOTA itself in [(H6DOTA)]Cl2•4H2O•DMSO shows the same orientation of the N4O4 metal binding cavity reflecting the limited flexibility of DOTA in an octadentate coordination mode. In 8-coordinate complexes it can however accommodate M(III) ions with rion spanning a relatively wide range from 87 pm (Sc(III)) to 117 pm (Bi(III)). The larger Bi3+ ion appears to be the best metal-ligand size match since [Bi(DOTA)]- is associated with greater complex stability. In the solution state, [Sb(DOTA)]- is extremely susceptible to transmetallation by trivalent ions (Sc(III), Y(III), Bi(III)) and, significantly, even by biologically important divalent metal ions (Mg(II), Ca(II), Zn(II)). In all cases just one equivalent is enough to displace most of the Sb(III). [Sb(DOTA)]- is resistant to hydrolysis; however, since biologically more abundant metal ions easily substitute the antimony, DOTA complexes will not be suitable for deployment for the delivery of the, so far unexploited, theranostic isotope pair 119Sb and 117Sb.

OriginalsprogEngelsk
TidsskriftRSC Advances
Vol/bind12
Udgave nummer10
Sider (fra-til)5772-5781
ISSN2046-2069
DOI
StatusUdgivet - 2022

Bibliografisk note

Funding Information:
This work was supported by the NovoNordisk Foundation Exploratory Interdisciplinary Synergy Programme (NNF19OC0056845). Mads Sondrup Møller is thanked for assistance with SCXRD data collections.

Publisher Copyright:
© 2022 Royal Society of Chemistry. All rights reserved.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Facile transmetallation of [SbIII(DOTA)]- renders it unsuitable for medical applications'. Sammen danner de et unikt fingeraftryk.

Citationsformater