Extracting Categories By Hierarchical Clustering Using Global Relational Features

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

We introduce an object categorization system which uses hierarchical clustering to extract categories. The system is able to assign multiple, nested categories for unseen objects. In our system, objects are represented with global pair-wise relations computed from 3D features extracted by three RGB-D sensors. We show that our system outperforms a state-of-the-art approach particularly when only a few number of training samples is used.

OriginalsprogEngelsk
TitelPattern Recognition and Image Analysis : 7th Iberian Conference, IbPRIA 2015, Santiago de Compostela, Spain, June 17-19, 2015, Proceedings
RedaktørerRoberto Paredes, Jaime S. Cardoso, Xosé M. Pardo
ForlagSpringer
Publikationsdato2015
Sider541-551
ISBN (Trykt)978-3-319-19389-2
ISBN (Elektronisk)978-3-319-19390-8
DOI
StatusUdgivet - 2015
Begivenhed7th Iberian Conference on Pattern Recognition and Image Analysis - Santiago de Compostela, Spanien
Varighed: 17. jul. 201519. jul. 2015

Konference

Konference7th Iberian Conference on Pattern Recognition and Image Analysis
Land/OmrådeSpanien
BySantiago de Compostela
Periode17/07/201519/07/2015
NavnLecture Notes in Computer Science
Vol/bind9117
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Extracting Categories By Hierarchical Clustering Using Global Relational Features'. Sammen danner de et unikt fingeraftryk.

Citationsformater