Exponential Euler method for stiff stochastic differential equations with additive fractional Brownian noise

Minoo Kamrani*, Kristian Debrabant, Nahid Jamshidi

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

We discuss a system of stochastic differential equations with a stiff linear term and additive noise driven by fractional Brownian motions (fBms) with Hurst parameter (Formula presented.), which arise e.g. from spatial approximations of stochastic partial differential equations. For their numerical approximation, we present an exponential Euler scheme and show that it converges in the strong sense with an exact rate close to the Hurst parameter H. Further, based on E. Buckwar et al. [The numerical stability of stochastic ordinary differential equations with additive noise, Stoch. Dyn. 11 (2011), pp. 265–281], we conclude the existence of a unique stationary solution of the exponential Euler scheme that is pathwise asymptotically stable.

OriginalsprogEngelsk
TidsskriftInternational Journal of Computer Mathematics
Vol/bind101
Udgave nummer3
Sider (fra-til)357-371
ISSN0020-7160
DOI
StatusUdgivet - 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Exponential Euler method for stiff stochastic differential equations with additive fractional Brownian noise'. Sammen danner de et unikt fingeraftryk.

Citationsformater