Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry

Yusra Al-Eryani, Morten Ib Rasmussen, Sven Kjellström, Peter Højrup, Cecilia Emanuelsson, Claes von Wachenfeldt

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


Adaptor proteins assist proteases in degrading specific proteins under appropriate conditions. The adaptor protein YjbH promotes the degradation of an important global transcriptional regulator Spx, which controls the expression of hundreds of genes and operons in response to thiol-specific oxidative stress in Bacillus subtilis. Under normal growth conditions, the transcription factor is bound to the adaptor protein and therefore degraded by the AAA+ protease ClpXP. If this binding is alleviated during stress, the transcription factor accumulates and turns on genes encoding stress-alleviating proteins. The adaptor protein YjbH is thus a key player involved in these interactions but its structure is unknown. To gain insight into its structure and interactions we have used chemical crosslinking mass spectrometry. Distance constraints obtained from the crosslinked monomer were used to select and validate a structure model of YjbH and then to probe its interactions with other proteins. The core structure of YjbH is reminiscent of DsbA family proteins. One lysine residue in YjbH (K177), located in one of the α-helices outside the thioredoxin fold, crosslinked to both Spx K99 and Spx K117, thereby suggesting one side of the YjbH for the interaction with Spx. Another lysine residue that crosslinked to Spx was YjbH K5, located in the long and presumably very flexible N-terminal arm of YjbH. Our crosslinking data lend support to a model proposed based on site-directed mutagenesis where the YjbH interaction with Spx can stabilize and present the C-terminal region of Spx for protease recognition and proteolysis. Proteins 2016; 84:1234-1245. © 2016 Wiley Periodicals, Inc.

Udgave nummer9
Sider (fra-til)1234-1245
StatusUdgivet - sep. 2016


Dyk ned i forskningsemnerne om 'Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry'. Sammen danner de et unikt fingeraftryk.