Exact results for scaling dimensions of neutral operators in scalar conformal field theories

Oleg Antipin*, Jahmall Bersini, Francesco Sannino

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

1 Downloads (Pure)

Abstract

We determine the scaling dimension Δn for the class of composite operators φn in the λφ4 theory in d=4-ϵ taking the double scaling limit n→∞ and λ→0 with fixed λn via a semiclassical approach. Our results resum the leading power of n at any loop order. In the small λn regime we reproduce the known diagrammatic results and predict the infinite series of higher-order terms. For intermediate values of λn we find that Δn/n increases monotonically approaching a (λn)1/3 behavior in the λn→∞ limit. We further generalize our results to neutral operators in the φ4 in d=4-ϵ, φ3 in d=6-ϵ, and φ6 in d=3-ϵ theories with O(N) symmetry.

OriginalsprogEngelsk
ArtikelnummerL041701
TidsskriftPhysical Review D
Vol/bind111
Udgave nummer4
ISSN2470-0010
DOI
StatusUdgivet - 15. feb. 2025

Fingeraftryk

Dyk ned i forskningsemnerne om 'Exact results for scaling dimensions of neutral operators in scalar conformal field theories'. Sammen danner de et unikt fingeraftryk.

Citationsformater