Evolutionary Algorithm for Feature Subset Selection in Predicting Tumor Outcomes Using Microarray Data

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

Feature subset selection for outcome prediction is a critical issue in large scale microarray experiments in cancer research. This paper introduces an integrative approach that combines significant gene expression analysis, the genetic algorithm and machine learning for selecting informative gene markers and for predicting tumor outcomes including survival outcomes. In case of survival data, full use of individual’s survival information (both censored and uncensored) is made in selecting informative genes for survival outcome prediction. Applications of our method to published microarray data on epithelial ovarian cancer survival and breast cancer metastasis have identified prognostic genes that predict individual survival and metastatic outcomes with improved power while basing on considerably shorter gene lists.

OriginalsprogEngelsk
TitelBioinformatics Research and Applications
RedaktørerIon Măndoiu, Raj Sunderraman, Alexander Zelikovsky
ForlagSpringer
Publikationsdato2008
Sider426-433
DOI
StatusUdgivet - 2008
BegivenhedFourth International Symposium, ISBRA 2008 - Atlanta, GA, USA
Varighed: 6. maj 20089. maj 2008
Konferencens nummer: 4

Konference

KonferenceFourth International Symposium, ISBRA 2008
Nummer4
Land/OmrådeUSA
ByAtlanta, GA
Periode06/05/200809/05/2008
NavnLecture Notes in Computer Science
Vol/bind4983
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Evolutionary Algorithm for Feature Subset Selection in Predicting Tumor Outcomes Using Microarray Data'. Sammen danner de et unikt fingeraftryk.

Citationsformater