Estimation of Human Compliance Parameters During Robot Kinesthetic Teaching by Compensation of the Dynamics of the Force-Torque Sensor

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

23 Downloads (Pure)

Abstract

This paper presents a method for estimating the compliance of the human arm in a robot kinesthetic teaching scenario, while taking into account the dynamics of the force-torque sensor. We model the dynamics of the sensor as a second order system and identify this experimentally. With the estimated transfer function, the sensor dynamics can be removed from the measurements of the human-robot interaction experiment, such that only the human dynamics is measured. Once the signal has been filtered, we use regularized Dynamic Regressor Extension and Mixing to estimate these parameters with better convergence characteristics than previously-used estimators. We validate our results both in simulation and experimentally on a real robot.
OriginalsprogEngelsk
Titel2024 IEEE 20th International Conference on Automation Science and Engineering (CASE)
ForlagIEEE
Publikationsdatoaug. 2024
Sider3393-3399
ISBN (Elektronisk)979-8-3503-5851-3
DOI
StatusUdgivet - aug. 2024
Begivenhed2024 IEEE 20th International Conference on Automation Science and Engineering - Bari, Italien
Varighed: 28. aug. 20241. sep. 2024
https://2024.ieeecase.org/

Konference

Konference2024 IEEE 20th International Conference on Automation Science and Engineering
Land/OmrådeItalien
ByBari
Periode28/08/202401/09/2024
Internetadresse
NavnProceedings - IEEE International Conference on Automation Science and Engineering
ISSN2161-8070

Bibliografisk note

@2024 IEEE

Fingeraftryk

Dyk ned i forskningsemnerne om 'Estimation of Human Compliance Parameters During Robot Kinesthetic Teaching by Compensation of the Dynamics of the Force-Torque Sensor'. Sammen danner de et unikt fingeraftryk.
  • EUROfusion

    Sloth, C. (Projektdeltager)

    Projekter: ProjektEU

Citationsformater