Escape angles in bulk χ(2) soliton interactions

Steffen Kjær Johansen*, Ole Bang, Mads Peter Sørensen

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Resumé

We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at opposite, but arbitrary transverse angles in quadratic nonlinear (or so-called χ(2)) bulk media. We predict quantitatively the outwards escape angle, below which the solitons turn around and collide, and above which they continue to move-away from each other. For in-plane interaction, the theory allows prediction of the outcome of a collision through the inwards escape angle, i.e., whether the solitons fuse or cross. We find an analytical expression determining the inwards escape angle using Gaussian approximations for the solitons. The theory is verified numerically.

OriginalsprogEngelsk
Artikelnummer026601
TidsskriftPhysical Review E
Vol/bind65
Udgave nummer2
ISSN2470-0045
DOI
StatusUdgivet - 1. feb. 2002

Fingeraftryk

escape
Solitons
solitary waves
Angle
Interaction
interactions
Prediction Theory
Gaussian Approximation
fuses
Transverse
Continue
Collision
Predict
collisions
Arbitrary
predictions
approximation

Citer dette

Johansen, Steffen Kjær ; Bang, Ole ; Sørensen, Mads Peter. / Escape angles in bulk χ(2) soliton interactions. I: Physical Review E. 2002 ; Bind 65, Nr. 2.
@article{00e8c6d118d0404d8281f89783bc6ecb,
title = "Escape angles in bulk χ(2) soliton interactions",
abstract = "We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at opposite, but arbitrary transverse angles in quadratic nonlinear (or so-called χ(2)) bulk media. We predict quantitatively the outwards escape angle, below which the solitons turn around and collide, and above which they continue to move-away from each other. For in-plane interaction, the theory allows prediction of the outcome of a collision through the inwards escape angle, i.e., whether the solitons fuse or cross. We find an analytical expression determining the inwards escape angle using Gaussian approximations for the solitons. The theory is verified numerically.",
author = "Johansen, {Steffen Kj{\ae}r} and Ole Bang and S{\o}rensen, {Mads Peter}",
year = "2002",
month = "2",
day = "1",
doi = "10.1103/PhysRevE.65.026601",
language = "English",
volume = "65",
journal = "Physical Review E",
issn = "2470-0045",
publisher = "American Physical Society",
number = "2",

}

Escape angles in bulk χ(2) soliton interactions. / Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter.

I: Physical Review E, Bind 65, Nr. 2, 026601, 01.02.2002.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

TY - JOUR

T1 - Escape angles in bulk χ(2) soliton interactions

AU - Johansen, Steffen Kjær

AU - Bang, Ole

AU - Sørensen, Mads Peter

PY - 2002/2/1

Y1 - 2002/2/1

N2 - We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at opposite, but arbitrary transverse angles in quadratic nonlinear (or so-called χ(2)) bulk media. We predict quantitatively the outwards escape angle, below which the solitons turn around and collide, and above which they continue to move-away from each other. For in-plane interaction, the theory allows prediction of the outcome of a collision through the inwards escape angle, i.e., whether the solitons fuse or cross. We find an analytical expression determining the inwards escape angle using Gaussian approximations for the solitons. The theory is verified numerically.

AB - We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at opposite, but arbitrary transverse angles in quadratic nonlinear (or so-called χ(2)) bulk media. We predict quantitatively the outwards escape angle, below which the solitons turn around and collide, and above which they continue to move-away from each other. For in-plane interaction, the theory allows prediction of the outcome of a collision through the inwards escape angle, i.e., whether the solitons fuse or cross. We find an analytical expression determining the inwards escape angle using Gaussian approximations for the solitons. The theory is verified numerically.

U2 - 10.1103/PhysRevE.65.026601

DO - 10.1103/PhysRevE.65.026601

M3 - Journal article

AN - SCOPUS:41349093500

VL - 65

JO - Physical Review E

JF - Physical Review E

SN - 2470-0045

IS - 2

M1 - 026601

ER -