Enriched power of disease-concordant twin-case-only design in detecting interactions in genome-wide association studies

Weilong Li, Jan Baumbach, Afsaneh Mohammadnejad, Charlotte Brasch-Andersen, Fabio Vandin, Jan O. Korbel, Qihua Tan*

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

103 Downloads (Pure)

Abstrakt

Genetic interaction is a crucial issue in the understanding of functional pathways underlying complex diseases. However, detecting such interaction effects is challenging in terms of both methodology and statistical power. We address this issue by introducing a disease-concordant twin-case-only design, which applies to both monozygotic and dizygotic twins. To investigate the power, we conducted a computer simulation study by setting a series of parameter schemes with different minor allele frequencies and relative risks. Results from the simulation study reveals that the disease-concordant twin-case-only design largely reduces sample size required for sufficient power compared to the ordinary case-only design for detecting gene-gene interaction using unrelated individuals. Sample sizes for dizygotic and monozygotic twins were roughly 1/2 and 1/4 of sample sizes in the ordinary case-only design. Since dizygotic twins are genetically similar as siblings, the enriched power for dizygotic twins also applies to affected siblings, which could help to largely extend the application of the powerful twin-case-only design. In summary, our simulation reveals high value of disease-concordant twins and siblings in efficiently detecting gene-by-gene interactions.
OriginalsprogEngelsk
TidsskriftEuropean Journal of Human Genetics
Vol/bind27
Udgave nummer4
Sider (fra-til)631-636
ISSN1018-4813
DOI
StatusUdgivet - 1. apr. 2019

Fingeraftryk Dyk ned i forskningsemnerne om 'Enriched power of disease-concordant twin-case-only design in detecting interactions in genome-wide association studies'. Sammen danner de et unikt fingeraftryk.

Citationsformater