ELKI in time: ELKI 0.2 for the performance evaluation of distance measures for time series

Elke Achtert*, Thomas Bernecker, Hans Peter Kriegel, Erich Schubert, Arthur Zimek

*Kontaktforfatter for dette arbejde

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstrakt

ELKI is a unified software framework, designed as a tool suitable for evaluation of different algorithms on high dimensional real-valued feature-vectors. A special case of high dimensional real-valued feature-vectors are time series data where traditional distance measures like L p -distances can be applied. However, also a broad range of specialized distance measures like, e.g., dynamic time-warping, or generalized distance measures like second order distances, e.g., shared-nearest-neighbor distances, have been proposed. The new version ELKI 0.2 now is extended to time series data and offers a selection of these distance measures. It can serve as a visualization- and evaluation-tool for the behavior of different distance measures on time series data.

OriginalsprogEngelsk
TitelAdvances in Spatial and Temporal Databases - 11th International Symposium, SSTD 2009, Proceedings
RedaktørerN. Mamoulis, T. Seidl, T. B. Pedersen, K. Torp, I. Assent
ForlagSpringer
Publikationsdato2. nov. 2009
Sider436-440
ISBN (Trykt)978-3-642-02981-3
ISBN (Elektronisk)978-3-642-02982-0
DOI
StatusUdgivet - 2. nov. 2009
Udgivet eksterntJa
Begivenhed11th International Symposium on Spatial and Temporal Databases - Aalborg, Danmark
Varighed: 8. jul. 200910. jul. 2009

Konference

Konference11th International Symposium on Spatial and Temporal Databases
LandDanmark
ByAalborg
Periode08/07/200910/07/2009
NavnLecture Notes in Computer Science
Vol/bind5644
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'ELKI in time: ELKI 0.2 for the performance evaluation of distance measures for time series'. Sammen danner de et unikt fingeraftryk.

Citationsformater