Elements of C* -algebras attaining their norm in a finite-dimensional representation

Kristin Courtney, Tatiana Shulman

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

We characterize the class of RFD C -algebras as those containing a dense subset of elements that attain their norm under a finite-dimensional representation. We show further that this subset is the whole space precisely when every irreducible representation of the C -algebra is finite-dimensional, which is equivalent to the C -algebra having no simple infinite-dimensional AF subquotient. We apply techniques from this proof to show the existence of elements in more general classes of C -algebras whose norms in finite-dimensional representations fit certain prescribed properties.

OriginalsprogEngelsk
TidsskriftCanadian Journal of Mathematics
Vol/bind71
Udgave nummer1
Sider (fra-til)93-111
ISSN0008-414X
DOI
StatusUdgivet - feb. 2019
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Elements of C* -algebras attaining their norm in a finite-dimensional representation'. Sammen danner de et unikt fingeraftryk.

Citationsformater