Electrically Tunable and Modulated Perovskite Quantum Emitters via Surface-Enhanced Landau Damping

Yan Liu, Jun Zhang, Evelin Csányi, Nur Qalishah Adanan, Hongtao Wang, Zheng Zhang, Sherry Lee Koon Yap, Henry Yit Loong Lee, Shutao Zhang, Wei Peng Goh, Li Jun Lim, Zhi Kuang Tan, Jian Rui Soh, Lulu Xiong, Dmitry A. Kalashnikov, Robert E. Simpson, Cheng Wei Qiu, N. Asger Mortensen, Joel K.W. Yang*, Zhaogang Dong*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

Tuning quantum emission to a specific wavelength at room temperature holds significant promise for enhancing secure quantum communication, particularly by aligning with the Fraunhofer lines in the solar spectrum. The integration of quantum emitters with phase-change materials enables emission wavelength modulation, especially when strong field enhancement is present. Antimony telluride (Sb2Te3) exhibits the potential to facilitate this functionality through its support of interband plasmonics and phase-change behavior. In this study, Sb₂Te₃ antennae are designed and fabricated to tune the emission energy of adjacent perovskite quantum dots (QDs) by over 570 meV. The underlying mechanism involves the localized surface plasmons (LSPs) on Sb₂Te₃ nanostructures, which exhibit a surface-enhanced Landau damping process that facilitates the decay of LSPs into electron-hole pairs. The generated hot electrons are then injected into perovskite QDs via the microscopic electron transport process, which can be triggered by the transition of Sb2Te3 from amorphous to a crystalline state, resulting in a significant emission energy shift from 1.64 to 2.21 eV. Furthermore, the emission energy of perovskite QDs on crystalline Sb₂Te₃ nanoantennae can be modulated through DC voltage bias, highlighting the potential for extensive wavelength tunability of quantum emitters integrated with electronic systems.

OriginalsprogEngelsk
TidsskriftAdvanced Materials
Vol/bind37
Udgave nummer16
Sider (fra-til)e2419076
ISSN0935-9648
DOI
StatusUdgivet - apr. 2025

Fingeraftryk

Dyk ned i forskningsemnerne om 'Electrically Tunable and Modulated Perovskite Quantum Emitters via Surface-Enhanced Landau Damping'. Sammen danner de et unikt fingeraftryk.

Citationsformater