Dimensionality-Aware Outlier Detection

Alastair Anderberg*, James Bailey, Ricardo J.G.B. Campello, Michael E. Houle, Henrique O. Marques, Miloš Radovanović, Arthur Zimek

*Kontaktforfatter

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

We present a nonparametric method for outlier detection that takes full account of local variations in intrinsic dimensionality within the dataset. Using the theory of Local Intrinsic Dimensionality (LID), our 'dimensionality-aware' outlier detection method, DAO, is derived as an estimator of an asymptotic local expected density ratio involving the query point and a close neighbor drawn at random. The dimensionality-aware behavior of DAO is due to its use of local estimation of LID values in a theoretically-justified way. Through comprehensive experimentation on more than 800 synthetic and real datasets, we show that DAO significantly outperforms three popular and important benchmark outlier detection methods: Local Outlier Factor (LOF), Simplified LOF, and kNN.

OriginalsprogEngelsk
TitelProceedings of the 2024 SIAM International Conference on Data Mining, SDM 2024
RedaktørerShashi Shekhar, Vagelis Papalexakis, Jing Gao, Zhe Jiang, Matteo Riondato
Antal sider9
ForlagSociety for Industrial and Applied Mathematics
Publikationsdato2024
Sider652-660
ISBN (Elektronisk)9781611978032
DOI
StatusUdgivet - 2024
Begivenhed2024 SIAM International Conference on Data Mining, SDM 2024 - Houston, USA
Varighed: 18. apr. 202420. apr. 2024

Konference

Konference2024 SIAM International Conference on Data Mining, SDM 2024
Land/OmrådeUSA
ByHouston
Periode18/04/202420/04/2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Dimensionality-Aware Outlier Detection'. Sammen danner de et unikt fingeraftryk.

Citationsformater