Abstract
We present a nonparametric method for outlier detection that takes full account of local variations in intrinsic dimensionality within the dataset. Using the theory of Local Intrinsic Dimensionality (LID), our 'dimensionality-aware' outlier detection method, DAO, is derived as an estimator of an asymptotic local expected density ratio involving the query point and a close neighbor drawn at random. The dimensionality-aware behavior of DAO is due to its use of local estimation of LID values in a theoretically-justified way. Through comprehensive experimentation on more than 800 synthetic and real datasets, we show that DAO significantly outperforms three popular and important benchmark outlier detection methods: Local Outlier Factor (LOF), Simplified LOF, and kNN.
Originalsprog | Engelsk |
---|---|
Titel | Proceedings of the 2024 SIAM International Conference on Data Mining, SDM 2024 |
Redaktører | Shashi Shekhar, Vagelis Papalexakis, Jing Gao, Zhe Jiang, Matteo Riondato |
Antal sider | 9 |
Forlag | Society for Industrial and Applied Mathematics |
Publikationsdato | 2024 |
Sider | 652-660 |
ISBN (Elektronisk) | 9781611978032 |
DOI | |
Status | Udgivet - 2024 |
Begivenhed | 2024 SIAM International Conference on Data Mining, SDM 2024 - Houston, USA Varighed: 18. apr. 2024 → 20. apr. 2024 |
Konference
Konference | 2024 SIAM International Conference on Data Mining, SDM 2024 |
---|---|
Land/Område | USA |
By | Houston |
Periode | 18/04/2024 → 20/04/2024 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'Dimensionality-Aware Outlier Detection'. Sammen danner de et unikt fingeraftryk.Relaterede priser
-
Best Research Paper Award (SIAM SDM 2024)
Anderberg, A. (Modtager), Bailey, J. (Modtager), Campello, R. J. G. B. (Modtager), E. Houle, M. (Modtager), Marques, H. O. (Modtager), Radovanović, M. (Modtager) & Zimek, A. (Modtager), 2024
Pris: Priser, stipendier, udnævnelser