Abstract
This paper presents a control barrier function
(CBF) for systems described by differential-algebraic equations
and applies the method to guarantee the safety of a two-link
flexible-link manipulator. The two main contributions of the
paper are: a) an extension of CBFs to systems governed by
differential-algebraic equations; b) a framework for simula-
tion of flexible-link robots in a floating frame of reference
formulation (FFRF) finite element method (FEM). Numerical
simulations demonstrate the minimally invasive safety control
of a flexible two-link manipulator with position constraints
through CBF quadratic programming without converting the
differential-algebraic equations to a control-affine system.
(CBF) for systems described by differential-algebraic equations
and applies the method to guarantee the safety of a two-link
flexible-link manipulator. The two main contributions of the
paper are: a) an extension of CBFs to systems governed by
differential-algebraic equations; b) a framework for simula-
tion of flexible-link robots in a floating frame of reference
formulation (FFRF) finite element method (FEM). Numerical
simulations demonstrate the minimally invasive safety control
of a flexible two-link manipulator with position constraints
through CBF quadratic programming without converting the
differential-algebraic equations to a control-affine system.
Originalsprog | Engelsk |
---|---|
Bogserie | Proceedings - IEEE International Conference on Intelligent Robots and Systems |
ISSN | 2153-0858 |
Status | Accepteret/In press - 18. okt. 2024 |