Design of OBF-TS fuzzy models based on multiple clustering validity criteria

Jeremias B. Machado, Wagner C. Amaral, R. J.G.B. Campello

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

Takagi-Sugeno Fuzzy Models within the framework of Orthonormal Basis Functions (OBF-TS Fuzzy Models) have shown to be an effective approach to nonlinear system identification and control due to several advantages they exhibit over those dynamic model topologies most commonly adopted in the literature. Despite all the theoretical advances and encouraging application results obtained so far, the automatic determination of the number of local OBF models remains an issue. This paper elaborates on the use of a mixture of clustering validity criteria to automatically determine the number of local models based on product space fuzzy clustering of I/O data.

OriginalsprogEngelsk
TitelProceedings 19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007
ForlagIEEE
Publikationsdato2007
Sider336-339
Artikelnummer4410401
ISBN (Trykt)076953015X, 9780769530154
DOI
StatusUdgivet - 2007
Udgivet eksterntJa
Begivenhed19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007 - Patras, Grækenland
Varighed: 29. okt. 200731. okt. 2007

Konference

Konference19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007
Land/OmrådeGrækenland
ByPatras
Periode29/10/200731/10/2007
SponsorIEEE Computer Society, Biological and Artificial Intelligence Society
NavnProceedings - International Conference on Tools with Artificial Intelligence, ICTAI
Vol/bind2
ISSN1082-3409

Fingeraftryk

Dyk ned i forskningsemnerne om 'Design of OBF-TS fuzzy models based on multiple clustering validity criteria'. Sammen danner de et unikt fingeraftryk.

Citationsformater