Degree-constrained 2-partitions of graphs

Jørgen Bang-Jensen, Stéphane Bessy*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

A (δ≥k1,δ≥k2)-partition of a graph G is a vertex-partition (V1,V2) of G into two non-empty sets satisfying that δ(G[Vi])≥ki for i=1,2. We determine, for all positive integers k1,k2, the complexity of deciding whether a given graph has a (δ≥k1,δ≥k2)-partition. We also address the problem of finding a function g(k1,k2) such that the (δ≥k1,δ≥k2)-partition problem is NP-complete for the class of graphs of minimum degree less than g(k1,k2) and polynomial time solvable for all graphs with minimum degree at least g(k1,k2). We prove that g(1,k) exists and has value k for all k≥3, that g(2,2) also exists and has value 3 and that g(2,3), if it exists, has value 4 or 5.

OriginalsprogEngelsk
TidsskriftTheoretical Computer Science
Vol/bind776
Sider (fra-til)64-74
Antal sider11
ISSN0304-3975
DOI
StatusUdgivet - 12. jul. 2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'Degree-constrained 2-partitions of graphs'. Sammen danner de et unikt fingeraftryk.

Citationsformater