DeepReduce: A Sparse-tensor Communication Framework for Federated Deep Learning

Hang Xu, Kelly Kostopoulou, Aritra Dutta, Xin Li, Alxendros Ntoulas, Panos Kalnis

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review


Sparse tensors appear frequently in federated deep learning, either as a direct artifact of the deep neural network’s gradients, or as a result of an explicit sparsification process. Existing communication primitives are agnostic to the peculiarities of deep learning; consequently, they impose unnecessary communication overhead. This paper introduces DeepReduce, a versatile framework for the compressed communication of sparse tensors, tailored to federated deep learning. DeepReduce decomposes sparse tensors into two sets, values and indices, and allows both independent and combined compression of these sets. We support a variety of common compressors, such as Deflate for values, or run-length encoding for indices. We also propose two novel compression schemes that achieve superior results: curve fitting-based for values, and bloom filter-based for indices. DeepReduce is orthogonal to existing gradient sparsifiers and can be applied in conjunction with them, transparently to the end-user, to significantly lower the communication overhead. As proof of concept, we implement our approach on TensorFlow and PyTorch. Our experiments with large real models demonstrate that DeepReduce transmits 320% less data than existing sparsifiers, without affecting accuracy. Code is available at
TitelAdvances in Neural Information Processing Systems 34 (NeurIPS 2021)
RedaktørerM. Ranzato, A. Beygelzimer, P.S. Liang, J.W. Vaughan, Y. Dauphin
Antal sider15
ForlagNeurIPS Proceedings
Publikationsdatodec. 2021
StatusUdgivet - dec. 2021
Udgivet eksterntJa
NavnAdvances in Neural Information Processing Systems


Dyk ned i forskningsemnerne om 'DeepReduce: A Sparse-tensor Communication Framework for Federated Deep Learning'. Sammen danner de et unikt fingeraftryk.