Deep Reinforcement Learning of Robotic Manipulation for Whip Targeting

Xiang Bai*, Junyi Wang, Xiaofeng Xiong, Evangelos Boukas

*Kontaktforfatter

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

This paper aims at a deep reinforcement learning (DRL) controller for fast (< 1.5s) manipulation of a flexible tool (i.e., whip) to hit a target in 3D space. The controller consists of a DRL algorithm for optimizing joint motions, and a proportional-derivative (PD) mechanism for tracking the optimized motions. Their objective is to minimize the distance between the whip-end-tip and the target. The proposed controller was validated in a 7-DOF robot arm by comparing four DRL algorithms in the physical simulator MuJoCo. It shows that the proximal policy optimization (PPO) outperforms others by obtaining the maximum average reward. Notably, PPO can still effectively interact with the environment under sparse or even unrewarding conditions, making it a robust choice for complex and dynamic tasks. Our work provides preliminary knowledge of DRL applications to fast robotic arm control in flexible object manipulation.

OriginalsprogEngelsk
Titel2025 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR)
RedaktørerIgnazio Infantino, Valeria Seidita
Antal sider6
ForlagIEEE
Publikationsdatoapr. 2025
ISBN (Elektronisk)9798331516857
DOI
StatusUdgivet - apr. 2025
Begivenhed2025 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR 2025 - Palermo, Italien
Varighed: 14. apr. 202518. apr. 2025

Konference

Konference2025 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR 2025
Land/OmrådeItalien
ByPalermo
Periode14/04/202518/04/2025
SponsorIEEE

Bibliografisk note

Publisher Copyright:
© 2025 IEEE.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Deep Reinforcement Learning of Robotic Manipulation for Whip Targeting'. Sammen danner de et unikt fingeraftryk.

Citationsformater