Deep Padding and Alignment Strategies for Irregular Multivariate Clinical Time Series

Nzamba Bignoumba*, Sadok Ben Yahia, Nedra Mellouli

*Kontaktforfatter

Publikation: Bidrag til tidsskriftKonferenceartikelForskningpeer review

4 Downloads (Pure)

Abstract

To improve the accuracy of an RNN when processing sparse and irregular multivariate clinical time series, we introduce two stacked deep learning models built on top of it, namely Padd-GRU and Alignment-driven Neural Network (ALNN). The Padd-GRU performs data-driven padding and imputation to obtain equal-length univariate and fill-in missing values, respectively. Then, the ALNN component transforms the resulting padded irregular multivariate clinical time series into a pseudo-aligned (or pseudo-regular) latent multivariate time series. We use the MIMIC-3 and PhysioNet databases to evaluate and compare our model to the state-of-the-art models on the mortality prediction task.

OriginalsprogEngelsk
TidsskriftProcedia Computer Science
Vol/bind246
Udgave nummerC
Sider (fra-til)3275-3284
ISSN1877-0509
DOI
StatusUdgivet - nov. 2024
Begivenhed28th International Conference on Knowledge Based and Intelligent information and Engineering Systems, KES 2024 - Seville, Spanien
Varighed: 11. nov. 202212. nov. 2022

Konference

Konference28th International Conference on Knowledge Based and Intelligent information and Engineering Systems, KES 2024
Land/OmrådeSpanien
BySeville
Periode11/11/202212/11/2022

Bibliografisk note

Publisher Copyright:
© 2024 The Authors.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Deep Padding and Alignment Strategies for Irregular Multivariate Clinical Time Series'. Sammen danner de et unikt fingeraftryk.

Citationsformater