Abstract
To improve the accuracy of an RNN when processing sparse and irregular multivariate clinical time series, we introduce two stacked deep learning models built on top of it, namely Padd-GRU and Alignment-driven Neural Network (ALNN). The Padd-GRU performs data-driven padding and imputation to obtain equal-length univariate and fill-in missing values, respectively. Then, the ALNN component transforms the resulting padded irregular multivariate clinical time series into a pseudo-aligned (or pseudo-regular) latent multivariate time series. We use the MIMIC-3 and PhysioNet databases to evaluate and compare our model to the state-of-the-art models on the mortality prediction task.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Procedia Computer Science |
Vol/bind | 246 |
Udgave nummer | C |
Sider (fra-til) | 3275-3284 |
ISSN | 1877-0509 |
DOI | |
Status | Udgivet - nov. 2024 |
Begivenhed | 28th International Conference on Knowledge Based and Intelligent information and Engineering Systems, KES 2024 - Seville, Spanien Varighed: 11. nov. 2022 → 12. nov. 2022 |
Konference
Konference | 28th International Conference on Knowledge Based and Intelligent information and Engineering Systems, KES 2024 |
---|---|
Land/Område | Spanien |
By | Seville |
Periode | 11/11/2022 → 12/11/2022 |
Bibliografisk note
Publisher Copyright:© 2024 The Authors.