TY - JOUR
T1 - Deep Learning-Powered CT-Less Multitracer Organ Segmentation From PET Images
T2 - A Solution for Unreliable CT Segmentation in PET/CT Imaging
AU - Salimi, Yazdan
AU - Mansouri, Zahra
AU - Shiri, Isaac
AU - Mainta, Ismini
AU - Zaidi, Habib
PY - 2025/4/1
Y1 - 2025/4/1
N2 - Purpose The common approach for organ segmentation in hybrid imaging relies on coregistered CT (CTAC) images. This method, however, presents several limitations in real clinical workflows where mismatch between PET and CT images are very common. Moreover, low-dose CTAC images have poor quality, thus challenging the segmentation task. Recent advances in CT-less PET imaging further highlight the necessity for an effective PET organ segmentation pipeline that does not rely on CT images. Therefore, the goal of this study was to develop a CT-less multitracer PET segmentation framework. Patients and Methods We collected 2062 PET/CT images from multiple scanners. The patients were injected with either 18F-FDG (1487) or 68Ga-PSMA (575). PET/CT images with any kind of mismatch between PET and CT images were detected through visual assessment and excluded from our study. Multiple organs were delineated on CT components using previously trained in-house developed nnU-Net models. The segmentation masks were resampled to coregistered PET images and used to train 4 different deep learning models using different images as input, including noncorrected PET (PET-NC) and attenuation and scatter-corrected PET (PET-ASC) for 18F-FDG (tasks 1 and 2, respectively using 22 organs) and PET-NC and PET-ASC for 68Ga tracers (tasks 3 and 4, respectively, using 15 organs). The models' performance was evaluated in terms of Dice coefficient, Jaccard index, and segment volume difference. Results The average Dice coefficient over all organs was 0.81 ± 0.15, 0.82 ± 0.14, 0.77 ± 0.17, and 0.79 ± 0.16 for tasks 1, 2, 3, and 4, respectively. PET-ASC models outperformed PET-NC models (P < 0.05) for most of organs. The highest Dice values were achieved for the brain (0.93 to 0.96 in all 4 tasks), whereas the lowest values were achieved for small organs, such as the adrenal glands. The trained models showed robust performance on dynamic noisy images as well. Conclusions Deep learning models allow high-performance multiorgan segmentation for 2 popular PET tracers without the use of CT information. These models may tackle the limitations of using CT segmentation in PET/CT image quantification, kinetic modeling, radiomics analysis, dosimetry, or any other tasks that require organ segmentation masks.
AB - Purpose The common approach for organ segmentation in hybrid imaging relies on coregistered CT (CTAC) images. This method, however, presents several limitations in real clinical workflows where mismatch between PET and CT images are very common. Moreover, low-dose CTAC images have poor quality, thus challenging the segmentation task. Recent advances in CT-less PET imaging further highlight the necessity for an effective PET organ segmentation pipeline that does not rely on CT images. Therefore, the goal of this study was to develop a CT-less multitracer PET segmentation framework. Patients and Methods We collected 2062 PET/CT images from multiple scanners. The patients were injected with either 18F-FDG (1487) or 68Ga-PSMA (575). PET/CT images with any kind of mismatch between PET and CT images were detected through visual assessment and excluded from our study. Multiple organs were delineated on CT components using previously trained in-house developed nnU-Net models. The segmentation masks were resampled to coregistered PET images and used to train 4 different deep learning models using different images as input, including noncorrected PET (PET-NC) and attenuation and scatter-corrected PET (PET-ASC) for 18F-FDG (tasks 1 and 2, respectively using 22 organs) and PET-NC and PET-ASC for 68Ga tracers (tasks 3 and 4, respectively, using 15 organs). The models' performance was evaluated in terms of Dice coefficient, Jaccard index, and segment volume difference. Results The average Dice coefficient over all organs was 0.81 ± 0.15, 0.82 ± 0.14, 0.77 ± 0.17, and 0.79 ± 0.16 for tasks 1, 2, 3, and 4, respectively. PET-ASC models outperformed PET-NC models (P < 0.05) for most of organs. The highest Dice values were achieved for the brain (0.93 to 0.96 in all 4 tasks), whereas the lowest values were achieved for small organs, such as the adrenal glands. The trained models showed robust performance on dynamic noisy images as well. Conclusions Deep learning models allow high-performance multiorgan segmentation for 2 popular PET tracers without the use of CT information. These models may tackle the limitations of using CT segmentation in PET/CT image quantification, kinetic modeling, radiomics analysis, dosimetry, or any other tasks that require organ segmentation masks.
KW - F-FDG
KW - Ga-PSMA
KW - deep learning
KW - organ segmentation
KW - PET/CT
KW - Humans
KW - Middle Aged
KW - Male
KW - Deep Learning
KW - Positron Emission Tomography Computed Tomography
KW - Image Processing, Computer-Assisted/methods
KW - Fluorodeoxyglucose F18
KW - Female
U2 - 10.1097/RLU.0000000000005685
DO - 10.1097/RLU.0000000000005685
M3 - Journal article
C2 - 39883026
AN - SCOPUS:85217008660
SN - 0363-9762
VL - 50
SP - 289
EP - 300
JO - Clinical Nuclear Medicine
JF - Clinical Nuclear Medicine
IS - 4
ER -