Data-driven proactive and predictive maintenance of power distribution systems

Publikation: Bidrag til tidsskriftKonferenceabstrakt i tidsskriftForskningpeer review

Abstract

Motivated by the inefficient preventive and corrective maintenance strategies typically employed in nowadays power
distribution systems and the advances in machine learning, this poster paper proposes research that aims to enable the
application of predictive maintenance strategies in power distribution systems. Predictive maintenance relies on
continuous monitoring of the power system to provide timely fault warnings, so remedial actions can be taken before
permanent failures occur. Because fault data can be scarce for power distribution systems and the employment of highfidelity sensors can be lacking, this poster paper proposes the use of data-driven models that can be developed with
limited fault data or using data with a low sampling frequency.
OriginalsprogEngelsk
ArtikelnummerP2
TidsskriftEnergy Informatics
Vol/bind4
Udgave nummerSuppl. 1
ISSN2520-8942
StatusUdgivet - 24. sep. 2021
Begivenhed1st Energy Informatics.Academy Conference Asia - Ph.d. workshop - Sino Danish Center Sustainable Energy, Beijing, Kina
Varighed: 28. maj 202128. maj 2021
Konferencens nummer: 1
https://www.energyinformatics.academy/eia-asia-2021-conference

Workshop

Workshop1st Energy Informatics.Academy Conference Asia - Ph.d. workshop
Nummer1
LokationSino Danish Center Sustainable Energy
Land/OmrådeKina
ByBeijing
Periode28/05/202128/05/2021
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'Data-driven proactive and predictive maintenance of power distribution systems'. Sammen danner de et unikt fingeraftryk.

Citationsformater