Data-Driven Digital Twin Based Energy Flexibility Investigation for Commercial Greenhouse Production Process

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

3 Downloads (Pure)

Abstract

Commercial greenhouses require sophisticated energy management strategies to ensure optimal plant growth while minimizing operational costs. The ability to adapt energy usage flexibly in response to varying market prices and environmental conditions is crucial. This paper introduces a data-driven digital twin, incorporating discrete event simulations and symbolic regression, to model and optimize real-world processes within a commercial greenhouse. This approach enables precise control and adjustment of energy usage, enhancing flexibility. A case study of one of Denmark's largest commercial greenhouses is applied to demonstrate the digital twin's applicability and effectiveness. Implementation of the digital twin significantly enhanced the greenhouse's energy flexibility, allowing for adaptive energy consumption that aligns with fluctuating energy prices and availability without compromising plant growth. The results illustrate that digital twins can substantially improve energy flexibility, providing a valuable tool for greenhouse operators to optimize energy usage dynamically.
OriginalsprogEngelsk
TitelProgress in Artificial Intelligence : 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3–6, 2024, Proceedings, Part I
RedaktørerManuel Filipe Santos, José Machado, Paulo Novais, Paulo Cortez, Pedro Miguel Moreira
ForlagSpringer Nature
Publikationsdato2025
Sider193-205
ISBN (Trykt)978-3-031-73496-0
ISBN (Elektronisk)978-3-031-73497-7
DOI
StatusUdgivet - 2025
BegivenhedThe EPIA Conference on Artificial Intelligence (AI) 2024 - Viana do Castelo, Portugal
Varighed: 3. sep. 20246. sep. 2024
https://epia2024.pt/

Konference

KonferenceThe EPIA Conference on Artificial Intelligence (AI) 2024
Land/OmrådePortugal
ByViana do Castelo
Periode03/09/202406/09/2024
Internetadresse
NavnLecture Notes in Computer Science
Vol/bind14967
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Data-Driven Digital Twin Based Energy Flexibility Investigation for Commercial Greenhouse Production Process'. Sammen danner de et unikt fingeraftryk.

Citationsformater